Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Allylic alcohols, addition

The propargylic alcohol group may be exploited as an allylic alcohol precursor (Eq. 6A.2) and may be generated by nucleophilic addition to an electrophile [25] or by addition of a formaldehyde equivalent to a preexisting terminal acetylene group [26], Once in place, reduction of the propargylic alcohol with lithium aluminum hydride or, preferably, with sodium bis(2-methoxyethoxy)aluminum hydride (Red-Al) [27] will produce the trans allylic alcohol. Alternately, catalytic reduction over Lindlar catalyst can be used to obtain the cis allylic alcohol [28]. The addition of other lithium acetylides to ketones produces chiral secondary alcohols, which also can be reduced by the preceding methods to the cis or trans allylic alcohols. Additional synthetic approaches to allylic alcohols may be found in the various references cited in this chapter. [Pg.240]

Alkynes. Allyl Alcohols Addition to the unsoturoted bond 982,1038... [Pg.64]

Besides oxidation reactions, MTO supported on AI2O3/ Si02, niobia, or zeolites also catalyzes the metathesis of functionalized alkenes, 1,2 transposition of allylic alcohols, addition of epoxides to ketones, alkoxylation of epoxides, dehydration and amination of alcohols, and... [Pg.4024]

Torgov introduced an important variation of the Michael addition allylic alcohols are used as vinylogous a -synthons and 1,3-dioxo compounds as d -reagents (S.N. Ananchenko, 1962, 1963 H. Smith, 1964 C. Rufer) 1967). Mild reaction conditions have been successful in the addition of ],3-dioxo compounds to vinyl ketones. Potassium fluoride can act as weakly basic, non-nudeophilic catalyst in such Michael additions under essentially non-acidic and non-basic conditions (Y. Kitabara, 1964). [Pg.71]

Conjugate addition of vinyllithium or a vinyl Grignard reagent to enones and subsequent oxidation afford the 1.4-diketone 16[25]. 4-Oxopentanals are synthesized from allylic alcohols by [3,3]sigmatropic rearrangement of their vinyl ethers and subsequent oxidation of the terminal double bond. Dihydrojasmone (18) was synthesized from allyl 2-octenyl ether (17) based on Claisen rearrangement and oxidation[25] (page 26). [Pg.24]

Allylation with allyl borates takes place smoothly under neutral conditions. Allylic alcohols are also used for allylation in the presence of boron oxide by in situ formation of allylic borates[125]. Similarly, arsenic oxide is used for allylation with allylic aleohols[126]. In addition, it was claimed that the allyl alkyl ethers 201. which are inert by themselves, can be used for the allylation in the presence of boron oxide[127]. [Pg.317]

Organoboranes are reactive compounds for cross-coupling[277]. The synthesis of humulene (83) by the intramolecular cross-coupling of allylic bromide with alkenylborane is an example[278]. The reaction of vinyiborane with vinyl-oxirane (425) affords the homoallylic alcohol 426 by 1,2-addition as main products and the allylic alcohol 427 by 1,4-addition as a minor product[279]. Two phenyl groups in sodium tetraphenylborate (428) are used for the coupling with allylic acetate[280] or allyl chloride[33,28l]. [Pg.347]

Wohf-Kishner reductions of a,jS-epoxy ketones give allylic alcohols, thus providing a means of reversing the arrangement in a,jS-unsaturated ketones or allylic alcohols. The reaction as first described by Wharton proceeds very readily (at room temperature in some instances) and the addition of strong base is unnecessary for example, the reduction of the epoxy ketone 143. [Pg.350]

A number of reaction variables or parameters have been examined. Catalyst solutions should not be prepared and stored since the resting catalyst is not stable to long term storage. However, the catalyst solution must be aged prior to the addition of allylic alcohol or TBHP. Diethyl tartrate and diisopropyl tartrate are the ligands of choice for most allylic alcohols. TBHP and cumene hydroperoxide are the most commonly used terminal oxidant and are both extremely effective. Methylene chloride is the solvent of choice and Ti(i-OPr)4 is the titanium precatalyst of choice. Titanium (IV) t-butoxide is recommended for those reactions in which the product epoxide is particularly sensitive to ring opening from alkoxide nucleophiles. ... [Pg.54]

This class of substrate is the only real problematic substrate for the AE reaction. The enantioseleetivity of the AE reaction with this class of substrate is often variable. In addition, rates of the catalytic reactions are often sluggish, thus requiring stoichiometric loadings of Ti/tartrate. Some representative product epoxides from AE reaction of 3Z-substituted allyl alcohols are shown below. [Pg.55]

The first, and so far only, metal-catalyzed asymmetric 1,3-dipolar cycloaddition reaction of nitrile oxides with alkenes was reported by Ukaji et al. [76, 77]. Upon treatment of allyl alcohol 45 with diethylzinc and (l ,J )-diisopropyltartrate, followed by the addition of diethylzinc and substituted hydroximoyl chlorides 46, the isoxazolidines 47 are formed with impressive enantioselectivities of up to 96% ee (Scheme 6.33) [76]. [Pg.235]

The above described approach was extended to include the 1,3-dipolar cycloaddition reaction of nitrones with allyl alcohol (Scheme 6.35) [78]. The zinc catalyst which is used in a stoichiometric amount is generated from allyl alcohol 45, Et2Zn, (R,J )-diisopropyltartrate (DIPT) and EtZnCl. Addition of the nitrone 52a leads to primarily tmns-53a which is obtained in a moderate yield, however, with high ee of up to 95%. Application of 52b as the nitrone in the reaction leads to higher yields of 53b (47-68%), high trans selectivities and up to 93% ee. Compared to other metal-catalyzed asymmetric 1,3-dipolar cycloaddition reactions of... [Pg.236]

The acid-catalyzed addition of an aldehyde—often formaldehyde 1—to a carbon-carbon double bond can lead to formation of a variety of products. Depending on substrate structure and reaction conditions, a 1,3-diol 3, allylic alcohol 4 or a 1,3-dioxane 5 may be formed. This so-called Prins reaction often leads to a mixture of products. [Pg.232]

The excess of N-chlorosuccinimide is destroyed by the addition of about 15 drops of allyl alcohol and 180 ml of water is then added with stirring. This mixture is held at 0°C for about one hour. The precipitated 16/3-methyl-1,4-pregnadiene-9o-chloro-11/3,17o,21-triol-3,20-dione-21-acetate is recovered by filtration. A solution of 250 mg of the chlorohydrin in 5 ml of 0.25N perchloric acid in methanol is stirred for about 18 hours at room temperature to produce 16/3-methyl-9o-chloro-11/3,17o,21-trihydroxy-1,4-pregnadiene-3,20-dione which is recovered by adding water to the reaction mixture and allowing the product to crystallize. Propionic anhydride is then used to convert this material to the dipropionate. [Pg.132]


See other pages where Allylic alcohols, addition is mentioned: [Pg.397]    [Pg.397]    [Pg.294]    [Pg.386]    [Pg.103]    [Pg.240]    [Pg.397]    [Pg.397]    [Pg.294]    [Pg.386]    [Pg.103]    [Pg.240]    [Pg.460]    [Pg.252]    [Pg.137]    [Pg.144]    [Pg.263]    [Pg.325]    [Pg.374]    [Pg.347]    [Pg.74]    [Pg.225]    [Pg.229]    [Pg.244]    [Pg.248]    [Pg.221]    [Pg.51]    [Pg.120]    [Pg.122]    [Pg.126]    [Pg.128]    [Pg.129]    [Pg.224]    [Pg.236]    [Pg.167]    [Pg.766]   
See also in sourсe #XX -- [ Pg.218 ]




SEARCH



Addition alcohols

Alcohol additive

Allyl addition

Allyl alcohol addition

Allylic addition

© 2024 chempedia.info