Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Allyl chloride, reaction

Results for the two reactors are given in Figure 5.27. In the adiabatic reactor, temperature increases down the reactor as chlorine is consumed and products are formed. In the constant-coolant temperature reactor, temperature reaches a maximum of 411 K at about 0.6 m from the inlet. Note that very little allyl chloride is formed in the cooled reactor because the temperatures are low. In the adiabatic reactor, the high temperatures increase the allyl chloride reaction rates because of the higher activation energy. [Pg.281]

FIGURE 17.6 Influence of temperature on the epoxidation of allyl chloride. Reaction conditions 1.65 g 33.5 wt.% H2O2 aqueous solution, 10 g allyl chloride, 3 g internal standard, 0.31 g catalyst E, 0.0075 g Na2HP04 12H20, 2 h except the reaction time was 3 h at 45 C. [Pg.442]

The reaction of isobutane with vinyl chloride in the presence of aluminum chloride yielded liquid isoparaffins and l,l-dichloro-3,3-dimethyl-butane (40% yield at —10° and 20% yield at 25°). t-Butyl was isolated in about 10% yield. The formation of the dichlorohexane instead of monochlorohexane may be explained as being due to the relative unreactivity of the primary chlorine atoms only a very small amount of the dichloride is reduced to monochloride by the reaction similar to step 3. In the case of the allyl chloride reaction, the dichloroheptane contains a secondary chlorine atom and reacts readily with isobutane, yielding raono-chloroheptane and <-butyl chloride. Under conditions which are such as bring about the reduction of a chlorine atom of the dichlorohexane, both chlorine atoms are replaced, and the product consists of isoparaffins and only a very small amount of monochlorohexane. [Pg.46]

Figure 5.5 Competing reactions (a) series reactions (b) parallel reactions (c) series-parallel reactions (d) exothermic allyl chloride reactions. Figure 5.5 Competing reactions (a) series reactions (b) parallel reactions (c) series-parallel reactions (d) exothermic allyl chloride reactions.
Etherification of Sucrose Chelates by Allyl Halides, and Sodium Bromoacetate, Allyl bromide or chloride was added to a dimethylsulphoxide (DMSO) solution of sucrose chelate in the ratios of sucrose allyl halide 1 1,1, 1 1,3, 1 2,0 and 1 2,5 and kept at 80°C for 16 to 48 h. The allyl bromide reactions were carried out in screw cap, sealed test tubes and most of the allyl chloride reactions in a sealed autoclave. Decomposition of the sucrose was prevented by keeping the ratio of sucrose to allyl halide equal or less than the ratio 1 2,5. The reaction between sucrose chelates and sodium bromoacetate was performed in the following ratios sucrose bromoacetate, 1 2,6, 1 3,8, 1 5,2 and 1 7,0, in DMSO for 72 h at 70°C. [Pg.64]

B.i.a. Trapping the Palladium Complex with Allyl Chloride. Reaction of alkynes with PdCl2-LiCl at a low chloride concentration afforded mainly (Z)-isomer, a result consistent with a cis-chloropalladation pathway (Scheme la). Increasing chloride concentration increased the yield of the ( )-isomer, that is, increased the trans-chloropalladationt i (Scheme lb). [Pg.622]

Figure C.l Process Flow Diagram for the Production of Allyl Chloride (Reaction Section)... Figure C.l Process Flow Diagram for the Production of Allyl Chloride (Reaction Section)...
Allyl Chloride. Comparatively poor yields are obtained by the zinc chloride - hydrochloric acid method, but the following procedure, which employs cuprous chloride as a catalyst, gives a yield of over 90 per cent. Place 100 ml. of allyl alcohol (Section 111,140), 150 ml. of concentrated hydrochloric acid and 2 g. of freshly prepared cuprous chloride (Section II,50,i one tenth scale) in a 750 ml. round-bottomed flask equipped with a reflux condenser. Cool the flask in ice and add 50 ml. of concen trated sulphuric acid dropwise through the condenser with frequent shaking of the flask. A little hydrogen chloride may be evolved towards the end of the reaction. Allow the turbid liquid to stand for 30 minutes in order to complete the separation of the allyl chloride. Remove the upper layer, wash it with twice its volume of water, and dry over anhydrous calcium chloride. Distil the allyl chloride passes over at 46-47°. [Pg.276]

The intermediate 190 of the intramolecular aminopalladation of an allenic bond with jV-tosylcarbamate undergoes insertion of allylic chloride. Subsequent elimination of PdCl2 occurs to afford the 1,4-diene system 191. The regeneration of Pd(II) species makes the reaction catalytic without using a reoxidant[190]. [Pg.47]

Benzoic acid and naphthoic acid are formed by the oxidative carbonylation by use of Pd(OAc)2 in AcOH. t-Bu02H and allyl chloride are used as reoxidants. Addition of phenanthroline gives a favorable effect[360], Furan and thiophene are also carbonylated selectively at the 2-position[361,362]. fndole-3-carboxylic acid is prepared by the carboxylation of 1-acetylindole using Pd(OAc)2 and peroxodisulfate (Na2S208)[362aj. Benzoic acid derivatives are obtained by the reaction of benzene derivatives with sodium palladium mal-onate in refluxing AcOH[363]. [Pg.78]

The allyl-substituted cyclopentadiene 122 was prepared by the reaction of cyclopentadiene anion with allylic acetates[83], Allyl chloride reacts with carbon nucleophiles without Pd catalyst, but sometimes Pd catalyst accelerates the reaction of allylic chlorides and gives higher selectivity. As an example, allylation of the anion of 6,6-dimethylfulvene 123 with allyl chloride proceeded regioselectively at the methyl group, yielding 124[84]. The uncatalyzed reaction was not selective. [Pg.308]

Ketones can be prepared by trapping (transmetallation) the acyl palladium intermediate 402 with organometallic reagents. The allylic chloride 400 is car-bonylated to give the mixed diallylic ketone 403 in the presence of allyltri-butylstannane (401) in moderate yields[256]. Alkenyl- and arylstannanes are also used for ketone synthesis from allylic chlorides[257,258]. Total syntheses of dendrolasin (404)f258] and manoalide[259] have been carried out employing this reaction. Similarly, formation of the ketone 406 takes place with the alkylzinc reagent 405[260],... [Pg.343]

The /3,7-unsaturated aldehyde 407 is prepared in good yields by the carbo-nylation of an allylic chloride under mild conditions using tributyltin hydride as a hydride source[261]. Aldehydes are obtained in moderate yields by the reaction of CO and H2[262],... [Pg.344]

Organoboranes are reactive compounds for cross-coupling[277]. The synthesis of humulene (83) by the intramolecular cross-coupling of allylic bromide with alkenylborane is an example[278]. The reaction of vinyiborane with vinyl-oxirane (425) affords the homoallylic alcohol 426 by 1,2-addition as main products and the allylic alcohol 427 by 1,4-addition as a minor product[279]. Two phenyl groups in sodium tetraphenylborate (428) are used for the coupling with allylic acetate[280] or allyl chloride[33,28l]. [Pg.347]

It was claimed that the Z-form of the allylic acetate 430 was retained in homoallylic ketone 431 obtained by reaction with the potassium enolate of 3-vinylcyclopentanone (429), after treatment with triethylborane[282]. Usually this is not possible. The reaction of a (Z)-allylic chloride with an alkenylaluminum reagent to give 1,4-dienes proceeds with retention of the stereochemistry to a considerable extent when it is carried out at -70 C[283]. [Pg.348]

Coupling of allyl chloride with the (2 -alkenylpentafluorosilicate 463 using Pd(OAc)j as a catalyst at room temperature gives a 1,4-diene in good yields. The reaction has been applied to the synthesis of recifeiolide[299]. [Pg.351]

Intramolecular reaction of the allenyl carbamate 5 in the presence of a large excess of allylic chloride catalyzed by Pdi(dba)3 or PdCl2(PhCN)2 affords the substituted oxazolidin-2-one 6. Since the reaction is catalyzed by both Pd(II) and Pd(0), its mechanism is not dear[3]. [Pg.450]

The first step of the reaction is the oxypalladation of the triple bond with PdCl2 as shown by 228 to form the alkenylpalladium species 229, and the Pd is displaced with proton to regenerate Pd(TI) species and the lactone 224. The alkenylpalladium species 229 can be utilized for further reaction. When allyl chloride (230) is added, double bond insertion is followed by elimination of... [Pg.498]

PdCb, and the allylated lactone 232 is formed. Regeneration ofPdCl2 as shown by 231 makes the reaction catalytic. In this reaction, use of the Li salt 227 of 4-pentynoic acid (223) is recommended. Reaction of lithium 3-octynoate (233) with allyl chloride affords the unsaturated lactone 234, which is converted into the 7-keto acid 235 by hydrolysis[126]. [Pg.499]

Propargylic alcohol, after lithiation, reacts with CO2 to generate the lithium carbonate 243, which undergoes oxypalladation. The reaction of allyl chloride yields the cyclic carbonate 244 and PdC. By this reaction hydroxy and allyl groups are introduced into the triple bond to give the o-allyl ketone 245[129]. Also the formation of 248 from the keto alkyne 246 with CO2 via in situ formation of the carbonate 247 is catalyzed by Pd(0)[130]. [Pg.500]

The cyclic enol ether 255 from the functionalized 3-alkynoI 254 was converted into the furans 256 by the reaction of allyl chloride, and 257 by elimination of MeOH[132], The alkynes 258 and 260, which have two hydroxy groups at suitable positions, are converted into the cyclic acetals 259 and 261. Carcogran and frontalin have been prepared by this reaction[124]. [Pg.501]

The reaction of allyl halides with terminal alkynes by use of PdClifFhCNji as a catalyst affords the l-halo-l,4-pentadienes 297. 7r-AlIylpalladium is not an intermediate in this reaction. The reaction proceeds by chloropalladation of the triple bond by PdCh, followed by the insertion of the double bond of the allyl halide to generate 296. The last step is the regeneration by elimination of PdCh, which recycles[148]. The cis addition of allyl chloride to alkynes is supported by formation of the cyclopentenone 299 from the addition product 298 by Ni(CO)4-catalyzed carbonylation[149]. [Pg.504]

Quantitative Analysis of All llithium Initiator Solutions. Solutions of alkyUithium compounds frequentiy show turbidity associated with the formation of lithium alkoxides by oxidation reactions or lithium hydroxide by reaction with moisture. Although these species contribute to the total basicity of the solution as determined by simple acid titration, they do not react with allyhc and henzylic chlorides or ethylene dibromide rapidly in ether solvents. This difference is the basis for the double titration method of determining the amount of active carbon-bound lithium reagent in a given sample (55,56). Thus the amount of carbon-bound lithium is calculated from the difference between the total amount of base determined by acid titration and the amount of base remaining after the solution reacts with either benzyl chloride, allyl chloride, or ethylene dibromide. [Pg.239]

Uses. AEyl chloride is industrially the most important aHyl compound among all the aHyl compounds (see Chlorocarbons and CHLOROHYDROCARBONS, ALLYL CHLORIDE). It is used mosdy as an intermediate compound for producing epichlorohydrin, which is consumed as a raw material for epoxy resins (qv). World production of AC is approximately 700,000 tons per year, the same as that of epichlorohydrin. Epichlorohydrin is produced in two steps reaction of AC with an aqueous chlorine solution to yield dichloropropanol (mixture of 1,3-dichloropropanol and 2,3-dichloropropanol) by chlorohydrination, and then saponification with a calcium hydroxide slurry to yield epichlorohydrin. [Pg.77]

Even more impoitandy, these lead to reduction by-products in the commercial hydrosdylation reaction with allyl chloride. [Pg.28]

Substitutive chlotination of propylene is the commercial route to allyl chloride. For this reaction AH° = —113 kJ/mol (—27 kcal/mol). [Pg.33]

Reaction Mechanism. High temperature vapor-phase chlorination of propylene [115-07-17 is a free-radical mechanism in which substitution of an allyhc hydrogen is favored over addition of chlorine to the double bond. Abstraction of allyhc hydrogen is especially favored since the allyl radical intermediate is stabilized by resonance between two symmetrical stmctures, both of which lead to allyl chloride. [Pg.33]

Many techniques have been developed to accomplish this, for example, the use of a cooled recirculating system in which the chlorine is dissolved in one part and the allyl chloride is dissolved and suspended in another (61). The streams are brought together in the main reaction zone and thence to a separator to remove water-insoluble products. Another method involves maintaining any organic phase present in the reaction zone in a highly dispersed condition (62). A continuous reactor consists of a recycle system in which make-up water and allyl chloride in a volume ratio of 10—50 1 are added... [Pg.74]

Alkylation with a vatiety of common alkyl halides oi sulfates gives stable dialkylcyanamides. However, the intermediate monoalkylated compounds usually cannot be isolated and cychc trimers or cotrimers with cyanamide ate obtained (13). The reaction can be carried out efficientiy in water or alcohol. Allyl chloride is an especially useful reagent, producing diallylcyanamide [538-08-9J (4). [Pg.367]

Compound 1, 2,2-diniethyl-4-pentenal, has been prepared by the Claisen rearrangement route described above and by reaction of isobutyraldehyde with allyl chloride in the presence of aqueous sodium hydroxide and a phase-transfer catalyst. Both routes are applicable to the synthesis of a variety of substituted 4-pentenals. [Pg.132]


See other pages where Allyl chloride, reaction is mentioned: [Pg.103]    [Pg.103]    [Pg.173]    [Pg.103]    [Pg.103]    [Pg.173]    [Pg.329]    [Pg.253]    [Pg.60]    [Pg.84]    [Pg.299]    [Pg.307]    [Pg.330]    [Pg.346]    [Pg.355]    [Pg.367]   
See also in sourсe #XX -- [ Pg.716 ]

See also in sourсe #XX -- [ Pg.716 ]

See also in sourсe #XX -- [ Pg.172 ]




SEARCH



Allyl chlorid

Allyl chloride

Allylic chlorides

© 2024 chempedia.info