Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkynes natural synthesis

The synthetic value of the Dotz reaction has for example been demonstrated by the synthesis of vitamin Ki(20) 10 (simplified structure). This natural product has been prepared synthetically from the chromium carbene complex 8 and the alkyne 9 in two steps the second step being the oxidative decomplexation to yield the free product 10 ... [Pg.100]

The total synthesis of ( )-estrone [( )-1 ] by Vollhardt et al. is a novel extension of transition metal mediated alkyne cyclotrimeriza-tion technology. This remarkable total synthesis is achieved in only five steps from 2-methylcyclopentenone (19) in an overall yield of 22%. The most striking maneuver in this synthesis is, of course, the construction of tetracycle 13 from the comparatively simple diyne 16 by combining cobalt-mediated and ort/io-quinodimethane cycloaddition reactions. This achievement bodes well for future applications of this chemistry to the total synthesis of other natural products. [Pg.165]

Other examples of [2C+2S+1C0] cycloaddition reactions have been described by Herndon et al. by the use of chromium cyclopropyl(methoxy)carbenes. These complexes react with alkynes releasing ethene and forming cyclopenta-dienone derivatives, which evolve to cyclopentenone derivatives in the presence of chromium(O) and water [122] (Scheme 76). This reaction has been extended to intramolecular processes and also to the synthesis of some natural products [123]. These authors have also described another process involving a formal [2C+2S+1C0] cycloaddition reaction. Thus, the reaction of methyl and cyclo-propylcarbene complexes with phenylacetylene derivatives does not afford the expected benzannulated products, and several regioisomers of cyclopentenone derivatives are the only products isolated [124] (Scheme 76). [Pg.110]

An obvious drawback in RCM-based synthesis of unsaturated macrocyclic natural compounds is the lack of control over the newly formed double bond. The products formed are usually obtained as mixture of ( /Z)-isomers with the (E)-isomer dominating in most cases. The best solution for this problem might be a sequence of RCAM followed by (E)- or (Z)-selective partial reduction. Until now, alkyne metathesis has remained in the shadow of alkene-based metathesis reactions. One of the reasons maybe the lack of commercially available catalysts for this type of reaction. When alkyne metathesis as a new synthetic tool was reviewed in early 1999 [184], there existed only a single report disclosed by Fiirstner s laboratory [185] on the RCAM-based conversion of functionalized diynes to triple-bonded 12- to 28-membered macrocycles with the concomitant expulsion of 2-butyne (cf Fig. 3a). These reactions were catalyzed by Schrock s tungsten-carbyne complex G. Since then, Furstner and coworkers have achieved a series of natural product syntheses, which seem to establish RCAM followed by partial reduction to (Z)- or (E)-cycloalkenes as a useful macrocyclization alternative to RCM. As work up to early 2000, including the development of alternative alkyne metathesis catalysts, is competently covered in Fiirstner s excellent review [2a], we will concentrate here only on the most recent natural product syntheses, which were all achieved by Fiirstner s team. [Pg.353]

Scheme 94 Total synthesis of the natural compound dehydrohomoancepsenolide (473) through sequential application of chemoselective ruthenium-catalyzed RCM and tungsten-catalyzed alkyne homodimerization [191]... Scheme 94 Total synthesis of the natural compound dehydrohomoancepsenolide (473) through sequential application of chemoselective ruthenium-catalyzed RCM and tungsten-catalyzed alkyne homodimerization [191]...
Lindel T (2003) Alkyne metathesis in natural product synthesis. In Schmalz HG, Wirth T (eds) Organic synthesis highlights, vol V. Wiley-VCH, Weinheim, p 27... [Pg.360]

Organosilicon compounds are widely used in our daily life as oil, grease, rubbers, cosmetics, medicinal chemicals, etc. However, these compounds are not naturally occurring substances but artificially produced ones (for reviews of organosilicon chemistry, see [59-64]). Hydrosilylation reactions catalyzed by a transition-metal catalyst are one of the most powerful tools for the synthesis of organosilicon compounds. Reaction of an unsaturated C-C bond such as alkynes or alkenes with hydrosilane affords a vinyl- or alkylsilane, respectively (Scheme 16). [Pg.44]

Interestingly, significant progress has been made for the hydroamination of more reactive substrates such as styrenes, alkynes, dienes, and allenes. Specifically, highly selective catalysts have been discovered for the synthesis of fine chemicals (pharmaceuticals, natural products, chemical intermediates). In this area however, the problem of catalyst stabiUty can also be questioned in several cases. [Pg.132]

Snieckus and his group members [104] used the known domino Sonogashira/ Castro-Stephens reaction [105, 106] for the synthesis of the natural product pli-cadin (6/1-209), this having been isolated from Psorelia plicata in 1991 [107]. In this synthesis, Pd°-catalyzed reaction of the alkyne 6/1-210 and the iodobenzene derivative 6/1-211 in the presence of Cul led to the furan 6/1-212, which was transformed into 6/1-209 via 6/1-213 (Scheme 6/1.54). There are some discrepancies of the physical data of the natural and the synthetic product thus, it might be possible that the natural product has a different structure. It should also be mentioned that the... [Pg.393]

A solvent-free synthesis of benzo[b]furan derivatives 10-79, a class of compounds which is often found in physiologically active natural products, was described by Shanthan Rao and coworkers. These authors heated phosphorane 10-71 for 8 min in a microwave oven and obtained the benzo[b]furan 10-74 in 73% yield (Scheme 10.18) [25]. The sequence is initiated by an intramolecular Wittig reaction, providing alkyne 10-72 this underwent a subsequent Claisen rearrangement to give the intermediate 10-73. Also in this case, normal oil-bath heating gave much lower yields (5%) of the desired product the authors hypothesize that the micro-... [Pg.576]

The key feature of the first total synthesis of (+)-homopumiliotoxin 223G 418 was a Lewis acid-induced, chelation-controlled propargylation of the trifluoroacetate salt of (. )-2-acetyl pi peri dine 415, derived from iV-Cbz-L-pipecolinic acid. Alkyne 416 thus formed was transformed after several steps into 417, which was cyclized by activation of the primary hydroxyl with the carbon tetrabromide-triphenylphosphine system to give the natural product (Scheme 98) <1998TL2149>. [Pg.60]

These reactions are covered in other chapters of Volume 11 (Chapters 11.06 and 11.07). This part deals only with examples which are in connection with other sections of this chapter. Additions of metallocarbenoids to unsaturated partners have been extensively studied. Most of the initial studies have involved the transition metal-catalyzed decomposition of cr-carbonyl diazo compounds.163,164 Three main reaction modes of metallocarbenoids derived from a-carbonyl diazo precursor are (i) addition to an unsaturated C-C bond (olefin or alkyne), (ii) C-H insertion, and (iii) formation of an ylid (carbonyl or onium).1 5 These reactions have been applied to the total synthesis of natural... [Pg.320]

Depending on the nature of the substrates, selectivity could be completely reversed between the two isomeric products. For example, switching R1 group between Buc and Ph gave high yields of the first and second product structures, respectively. The authors noted that the reaction did not proceed if the imine contained an ortho-MeO group at R2 or if the imine was replaced with an aldehyde, oxime, or hydrazone. The catalytic cycle is initiated by C-H activation of the imine, that is, the formation of a five-membered metallocycle alkyne insertion affords the intermediate drawn in Scheme 69. It is noteworthy that this is the first report of catalytic synthesis of indene derivatives via a C-H insertion mechanism (C-H activation, insertion, intramolecular addition). [Pg.438]

Subsequent examination of a tethered alkyne-VCP with rhodium(i) resulted in the first metal-catalyzed [5 + 2]-reaction. Excellent yields were obtained with a variety of substrates (Scheme 3) irrespective of the steric and electronic nature of the R1 group. Notably, quaternary centers are accessed in high yield. Since this first report, in-depth studies on catalysts, substrate scope, selectivity, and applications to total synthesis have been carried out. Work in this area has been reviewed.23-26... [Pg.606]

In addition to transition metals, recent work has demonstrated that strong Lewis acids will catalyze the addition of silanes to alkynes in both an intra- and an intermolecular fashion.14,14a-14c The formation of vinylsilanes from alkynes is possible by other means as well, such as the synthetically important and useful silylcupration15,15a of alkynes followed by cuprate protonation to afford vinylsilanes. These reactions provide products which can be complementary in nature to direct hydrometallation. Alternatively, modern metathesis catalysts have made possible direct vinylsilane synthesis from terminal olefins.16,16a... [Pg.790]


See other pages where Alkynes natural synthesis is mentioned: [Pg.175]    [Pg.218]    [Pg.159]    [Pg.278]    [Pg.22]    [Pg.38]    [Pg.242]    [Pg.270]    [Pg.271]    [Pg.273]    [Pg.348]    [Pg.348]    [Pg.358]    [Pg.144]    [Pg.1256]    [Pg.52]    [Pg.25]    [Pg.423]    [Pg.155]    [Pg.451]    [Pg.191]    [Pg.681]    [Pg.438]    [Pg.445]    [Pg.317]    [Pg.291]    [Pg.299]    [Pg.790]    [Pg.27]    [Pg.112]   
See also in sourсe #XX -- [ Pg.672 , Pg.673 , Pg.674 , Pg.675 ]

See also in sourсe #XX -- [ Pg.672 , Pg.673 , Pg.674 , Pg.675 ]




SEARCH



Alkyne derivatives natural products synthesis

Alkynes synthesis

Nature alkynes

© 2024 chempedia.info