Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkyl substituents, steric effects

The reaction can be conveniently monitored by i.r. absorption spectroscopy by observing the intensity of the band at 1650 cm.-1 (C=N). The submitters observed almost complete disappearance of this band whereas the checkers found it still present in medium intensity in their product. In those instances where the a-carbon bears three alkyl substituents, steric effects retard the rate of addition, and in some cases (i.e., [Pg.15]

A mechanistic study by Deady and Korytsky, which showed that dealkylation is exactly the reverse of the alkylation reaction (79TL451), implies, according to the principle of microscopic reversibility, that the amount of strain in the TS for quaternization is two-thirds of that in the final quaternary salt, in close agreement with the early estimate by Brown. The ratio of substituent steric effects is 3/1 for disubstituted pyridines in methylation vs. demethylation. Because of smaller sensitivity to steric effects in thiazoles, steric acceleration in the reverse reaction is small (76AJC1745 79BSF(2)484). [Pg.189]

On the aryl ring of aryltrialkyltins can be introduced both electron-releasing and electron-withdrawing substituents. Steric effects can be important, however. The presence of an alkyl group ortho to tin often retards the cou-... [Pg.99]

In contrast to the results of base-catalyzed alkylations of sodium or potassium enolates under thermodynamic control, alkylations of enamines of unsymmetrical ketones occur largely or exclusively at the less-substituted a-position. More-substituted ketone enamines are destabilized relative to the less-substituted isomers by A - -strain involving the substituents on the nitrogen atom and at the 3-carbon atom. Although in most systems some of the more-substituted enamine is present in equilibrium with the less-substituted isomer, the former is less reactive toward C-alkylation because steric effects prevent effective overlap of the lone pair of electrons on nitrogen with the carbon-carbon ir-bond. [Pg.30]

Iron complexes containing bidentate alkyl and aryl phosphorus ligands cleave a variety of C-H bonds under mild conditions, Hydrido acetylide complexes were prepared by oxidative addition of primary acetylenes in the Fe(DPPE)2 and the Fe(DMPE)2 systems [DPPE = bis(diphenylphos-phino)ethane, DMPE = bis(dimethylphosphino)ethane]. The Fe(DMPE)2 system also cleaves C-H bonds of activated methyl groups, aromatic compounds, and certain other sp hybridized molecules. The C-H cleavage reactions are reversible, resulting in equilibrium mixtures of isomeric products in many cases. Studies of substituted benzenes show that while product stability is favored by electron withdrawing substituents, steric effects play a predominant role in the determination of product distribution. [Pg.67]

The classic rf cyclohexadienyl complexes of Fe(CO)3 first investigated by Fischer and Fischer [56], and subsequently by many research groups (including my own) provide a wealth of examples of studies of regiodirecting effects of substituents. With simple alkyl groups, steric effects send the nucleophile to the co position... [Pg.578]

Auto-association of A-4-thiazoline-2-thione and 4-alkyl derivatives has been deduced from infrared spectra of diluted solutions in carbon tetrachloride (58. 77). Results are interpretated (77) in terms of an equilibrium between monomer and cyclic dimer. The association constants are strongly dependent on the electronic and steric effects of the alkyl substituents in the 4- and 5-positions, respectively. This behavior is well shown if one compares the results for the unsubstituted compound (K - 1200 M" ,). 4-methyl-A-4-thiazoline-2-thione K = 2200 M ). and 5-methyl-4-r-butyl-A-4-thiazoline-2-thione K=120 M ) (58). [Pg.384]

The same situation is observed in the series of alkyl-substituted derivatives. Electron-donating alkyl substituents induce an activating effect on the basicity and the nucleophilicity of the nitrogen lone pair that can be counterbalanced by a deactivating and decelerating effect resulting from the steric interaction of ortho substituents. This aspect of the reactivity of thiazole derivatives has been well investigated (198, 215, 446, 452-456) and is discussed in Chapter HI. [Pg.126]

The steric effects of alkyl substituents (R= methyl, ethyl, i-propyl, f-butyl) on the nitrogen have been related to the steric factors of these same groups as measured in kinetic studies (152). [Pg.363]

The quatemization reaction of the thiazole nitrogen has been used to evaluate the steric effect of substituents in heterocyclic compounds since thiazole and its alkyl derivatives are good models for such study. In fact, substituents in the 2- and 4-positions of the ring only interact through their steric effects (inductive and resonance effects were constant in the studied series). The thiazole ring is planar, and the geometries of the ground and transition states are identical. Finally, the 2- and 4-positions have been shown to be different (259. 260). [Pg.386]

Steric and inductive effects determine the rate of formation of the pentacovalent siUcon reaction complex. In alkaline hydrolysis, replacement of a hydrogen by alkyl groups, which have lower electronegativity and greater steric requirements, leads to slower hydrolysis rates. Replacement of alkyl groups with bulkier alkyl substituents has the same effect. Reaction rates decrease according to ... [Pg.26]

Studies on covalent hydration of N-heterocycles (67AG(E)919,76AHC(20)117) have revealed the diagnostic value of alkyl substituents in structural assignments due to their steric hindrance effects in addition reactions. C-Methyl substituents are therefore also considered as molecular probes to solve fine-structural problems in the pteridine field. The derivatives... [Pg.265]

Alkyl substituents. The steric effect of 1-alkyl substituents in the pyrrole series has been demonstrated in, for example, Vilsmeier formylation reactions. Thus as the bulk of the alkyl substituent on nitrogen is increased e.g. from Me to Bu ) so does the proportion of /3 substitution (70JCS(C)2573). A similar trend has been observed in a series of experiments on the trifiuoroacetylation of A-alkylpyrroles with trifluoroacetic anhydride (80JCR(S)42). [Pg.44]

Alkyl substituents supplement the a-directing effect of the heteroatom and direct the incoming substituent into the 2-position. However, steric effects can result in an increased proportion of 5-substitution. [Pg.45]

Studies of the alkylation of indazoles (67HC(22)1) have been updated by Nunn (73JCS(PD2371) and Palmer (75JCS(P1)1695). The ratio of methylation at positions 1 and 2 is relatively sensitive to the steric effect of substituents at positions 3 and 7 as shown by the results obtained in basic medium for unsubstituted indazole (55 45) and its 3-phenyl (74 26) and7-nitro derivatives (29 71). [Pg.230]

A mechanism has been proposed to rationalize the results shown in Figure 23. The relative proportion of the A -pyrazolines obtained by the reduction of pyrazolium salts depends on steric and electronic effects. When all the substituents are alkyl groups, the hydride ion attacks the less hindered carbon atom for example when = Bu only C-5 is attacked. The smaller deuterohydride ion is less sensitive to steric effects and consequently the reaction is less selective (73BSF288). Phenyl substituents, both on the nitrogen atom and on the carbon atoms, direct the hydride attack selectively to one carbon atom and the isolated A -pyrazoline has the C—C double bond conjugated with the phenyl (328 R or R = Ph). Open-chain compounds are always formed during the reduction of pyrazolium salts, becoming predominant in the reduction of amino substituted pyrazoliums. [Pg.243]

Substitution reactions by the ionization mechanism proceed very slowly on a-halo derivatives of ketones, aldehydes, acids, esters, nitriles, and related compounds. As discussed on p. 284, such substituents destabilize a carbocation intermediate. Substitution by the direct displacement mechanism, however, proceed especially readily in these systems. Table S.IS indicates some representative relative rate accelerations. Steric effects be responsible for part of the observed acceleration, since an sfp- caibon, such as in a carbonyl group, will provide less steric resistance to tiie incoming nucleophile than an alkyl group. The major effect is believed to be electronic. The adjacent n-LUMO of the carbonyl group can interact with the electnai density that is built up at the pentacoordinate carbon. This can be described in resonance terminology as a contribution flom an enolate-like stmeture to tiie transition state. In MO terminology,.the low-lying LUMO has a... [Pg.301]

In the El cb mechanism, the direction of elimination is governed by the kinetic acidity of the individual p protons, which, in turn, is determined by the polar and resonance effects of nearby substituents and by the degree of steric hindrance to approach of base to the proton. Alkyl substituents will tend to retard proton abstraction both electronically and sterically. Preferential proton abstraction from less substituted positions leads to the formation of the less substituted alkene. This regiochemistry is opposite to that of the El reaction. [Pg.384]

Nitroalkanes show a related relationship between kinetic acidity and thermodynamic acidity. Additional alkyl substituents on nitromethane retard the rate of proton removal although the equilibrium is more favorable for the more highly substituted derivatives. The alkyl groups have a strong stabilizing effect on the nitronate ion, but unfavorable steric effects are dominant at the transition state for proton removal. As a result, kinetic and thermodynamic acidity show opposite responses to alkyl substitution. [Pg.422]

When this stereoelectronic requirement is combined with a calculation of the steric and angle strain imposed on the transition state, as determined by MM-type calculations, preferences for the exo versus endo modes of cyclization are predicted to be as summarized in Table 12.3. The observed results show the expected qualitative trend. The observed preferences for ring formation are 5 > 6, 6 > 7, and 8 > 7, in agreement with the calculated preferences. The relationship only holds for terminal double bonds. An additional alkyl substituent at either end of the double bond reduces the relative reactivity as a result of a steric effect. [Pg.691]

Correlations with o in carboxylic acid derivative reactions have been most successful for variations in the acyl portion, R in RCOX. Variation in the alkyl portion of esters, R in RCOOR, has not led to many good correlations, although use of relative rates of alkaline and acidic reactions, as in the defining relation, can generate linear correlations. The failure to achieve satisfactory correlations with cr for such substrates may be a consequence of the different steric effects of substituents in the acyl and alkyl locations. It has been shown that solvolysis rates of some acetates are related to the pA", of the leaving group, that is, of the parent alcohol. The pK of alcohols has been correlated with but this relationship... [Pg.340]

Upon formulating these relationships, phenols with branched alkyl substituents were not included in the data of a-cyclodextrin systems, though they were included in (3-cyclodextrin systems. In all the above equations, the n term was statistically significant at the 99.5 % level of confidence, indicating that the hydrophobic interaction plays a decisive role in the complexation of cyclodextrin with phenols. The Ibrnch term was statistically significant at the 99.5% level of confidence for (3-cyclo-dextrin complexes with m- and p-substituted phenols. The stability of the complexes increases with an increasing number of branches in substituents. This was ascribed to the attractive van der Waals interaction due to the close fitness of the branched substituents to the (3-cyclodextrin cavity. The steric effect of substituents was also observed for a-cyclodextrin complexes with p-substituted phenols (Eq. 22). In this case, the B parameter was used in place of Ibmch, since no phenol with a branched... [Pg.75]


See other pages where Alkyl substituents, steric effects is mentioned: [Pg.885]    [Pg.38]    [Pg.136]    [Pg.3285]    [Pg.3284]    [Pg.142]    [Pg.628]    [Pg.218]    [Pg.17]    [Pg.278]    [Pg.165]    [Pg.136]    [Pg.305]    [Pg.363]    [Pg.313]    [Pg.17]    [Pg.277]    [Pg.51]    [Pg.20]    [Pg.144]    [Pg.370]    [Pg.341]    [Pg.778]    [Pg.213]    [Pg.120]   
See also in sourсe #XX -- [ Pg.67 ]




SEARCH



Steric effects substituents

Substituent Steric Effects

Substituent effect Steric effects

Substituent effects alkylation

© 2024 chempedia.info