Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkyl quinones

It has been found satisfactory to continue the extraction for 30 minutes after the volume of the aqueous phase no longer decreases visibly. Saturated aqueous sodium bicarbonate washes may be used to effect removal of the acetic acid from ether solutions of alkyl quinones. The cascade distribution apparatus devised by Kies and Davis4 is useful for this purpose. As halo-genated quinones have been found to be unstable to bicarbonate, the acetic acid must be removed before oxidation of the corresponding aminophenols. [Pg.26]

This mechanism of activation has been supported by the observation that 5 provokes DNA damage and p53 upregulation, consistent with the intracellular generation of the alkylating quinone methide metabolite [161], Compounds lc and 4 can also be chemically (Ag20) or enzymatically (cytochrome P450) oxidised to the QM [162]. The 3,5-dimethyl derivative of 4 has been crystallographically characterised in its phenolic and quinone methide form. [Pg.102]

Misiti et al. found that in coned, sulfuric acid at 0° hydrazoic acid reacts with some alkylated quinones in an entirely different manner to give 2,5Af-2,5-azepindiones such as (5). A solution of the quinone (I) in coned, sulfuric acid is treated at 0° with 1 equivalent of sodium azide, added in portions. When evolution of nitrogen ceases the mixture is poured into ice and water and the precipitate is crystallized from aqueous ethanol. Yields are in the range 75-85%. NMR data for (5) show that the NH proton is directly coupled to the vinylic proton and hence that these groups are adjacent. [Pg.227]

This concept has been extended. Thus the trione (696) rapidly and irreversibly inactivates human erythrocyte nucleoside phosphorylase (PNPase), which catalyzes the reversible phosphorylation of inosine and guanosine to the respective bases and ribose 1-phosphate. Inhibitors of this enzyme have several potential medical applications, for example, in the prevention of foreign tissue rejection, in the treatment of gout and malaria, and for the potentiation of antineoplastic nucleosides. Mechanistically the 5,8-dione (quinone) (696) enters the enzyme active site. An active-site nucleophilic residue subsequently converts the quinone moiety to a hydroquinone by reductive addition (701). The resulting hydroquinone affords an alkylating quinone methide species by elimination of HCl (702) and then traps a second nucleophilic enzyme residue by a Michael type reaction (703). Cross-linking of the active site rationalizes the observed potency <91B8480>. [Pg.229]

A new synthesis of coenzyme Qi (CXXVI) and plastoquinone-1 (CCLXV) has been achieved by using the reaction of Tc-allylnickel(I) bromides and alkylated quinones in dimethylformamide or tetrahydrofuran (Hegedus et al 1972). Considerable amounts of hydroquinone derivatives are formed as a by-product. The reaction has been shown to proceed via an electron-transfer... [Pg.167]

Because 1,2-naphthoquinone (30) is highly sensitive to acid and heat, Takuwa and Kai applied the Mg(C104)2-mediated acylation to the synthesis of 3-alkylated-1,2-naphthoquinones (138). The pho-tochemically generated acylated hydroquinones 29 were readily transferred into the corresponding alkyl-quinones in moderate overall yields via a sequence of Clemmensen reduction and oxidation with Fremy s... [Pg.1791]

In addition to CuCfi, some other compounds such as Cu(OAc)2, Cu(N03)2-FeCl.i, dichromate, HNO3, potassium peroxodisulfate, and Mn02 are used as oxidants of Pd(0). Also heteropoly acid salts comtaining P, Mo, V, Si, and Ge are used with PdS04 as the redox system[2]. Organic oxidants such as benzo-quinone (BQ), hydrogen peroxide and some organic peroxides are used for oxidation. Alkyl nitrites are unique oxidants which are used in some industrial... [Pg.19]

Oxidation of LLDPE starts at temperatures above 150°C. This reaction produces hydroxyl and carboxyl groups in polymer molecules as well as low molecular weight compounds such as water, aldehydes, ketones, and alcohols. Oxidation reactions can occur during LLDPE pelletization and processing to protect molten resins from oxygen attack during these operations, antioxidants (radical inhibitors) must be used. These antioxidants (qv) are added to LLDPE resins in concentrations of 0.1—0.5 wt %, and maybe naphthyl amines or phenylenediamines, substituted phenols, quinones, and alkyl phosphites (4), although inhibitors based on hindered phenols are preferred. [Pg.395]

Oxidation. The use of l,4-ben2oquinone in combination with paHadium(Il) chloride converts terminal alkenes such as 1-hexene to alkyl methyl ketones in high yield (81%) (32). The quinone appears to reoxidi2e the palladium. [Pg.408]

Reactions of quinones with radicals have been explored, and alkylation with diacyl peroxides constitutes an important synthetic tool (68). Although there are limitations, an impressive range of substituents can be introduced in good yield. Examples include alkyl chains ending with functional groups, eg, 50% yield of (70) [80632-67-3] (69,70). [Pg.412]

The importance of quinones with unsaturated side chains in respiratory, photosynthetic, blood-clotting, and oxidative phosphorylation processes has stimulated much research in synthetic methods. The important alkyl- or polyisoprenyltin reagents, eg, (71) or (72), illustrate significant conversions of 2,3-dimethoxy-5-methyl-l,4-ben2oquinone [605-94-7] (73) to 75% (74) [727-81-1] and 94% (75) [4370-61-0] (71—73). [Pg.412]

The problems associated with predicting regioselectivity in quinone Diels-Alder chemistry have been studied, and a mechanistic model based on frontier molecular orbital theory proposed (85). In certain cases of poor regioselectivity, eg, 2-methoxy-5-methyl-l,4-ben2oquinone with alkyl-substituted dienes, the use of Lewis acid catalysts is effective (86). [Pg.414]

The kinetics of formation and hydrolysis of /-C H OCl have been investigated (262). The chemistry of alkyl hypochlorites, /-C H OCl in particular, has been extensively explored (247). /-Butyl hypochlorite reacts with a variety of olefins via a photoinduced radical chain process to give good yields of aUyflc chlorides (263). Steroid alcohols can be oxidized and chlorinated with /-C H OCl to give good yields of ketosteroids and chlorosteroids (264) (see Steroids). /-Butyl hypochlorite is a more satisfactory reagent than HOCl for /V-chlorination of amines (265). Sulfides are oxidized in excellent yields to sulfoxides without concomitant formation of sulfones (266). 2-Amino-1, 4-quinones are rapidly chlorinated at room temperature chlorination occurs specifically at the position adjacent to the amino group (267). Anhydropenicillin is converted almost quantitatively to its 6-methoxy derivative by /-C H OCl in methanol (268). Reaction of unsaturated hydroperoxides with /-C H OCl provides monocyclic and bicycHc chloroalkyl 1,2-dioxolanes. [Pg.475]

Another positive-working release by cyclization, illustrated by equation 5, starts with an immobile hydroquinone dye releaser (8), where R = alkyl and X is an immobilizing group. Cyclization and dye release take place in alkaU in areas where silver haUde is not undergoing development. In areas where silver haUde is being developed, the oxidized form of the mobile developing agent oxidizes the hydroquinone to its quinone (9), which does not release the... [Pg.492]

Various alkylating agents are used for the preparation of pyridazinyl alkyl sulfides. Methyl and ethyl iodides, dimethyl and diethyl sulfate, a-halo acids and esters, /3-halo acids and their derivatives, a-halo ketones, benzyl halides and substituted benzyl halides and other alkyl and heteroarylmethyl halides are most commonly used for this purpose. Another method is the addition of pyridazinethiones and pyridazinethiols to unsaturated compounds, such as 2,3(4//)-dihydropyran or 2,3(4//)-dihydrothiopyran, and to compounds with activated double bonds, such as acrylonitrile, acrylates and quinones. [Pg.36]

DJERASSI RYLANDER Oxidation Ru04 in oxidative cleavage ot phenols or alkenes oxidation ol aromatics to quinones oxidation ol alkyl amides to irmdes or ol ethers lo esters... [Pg.97]

Aromatic ethers and furans undergo alkoxylation by addition upon electrolysis in an alcohol containing a suitable electrolyte.Other compounds such as aromatic hydrocarbons, alkenes, A -alkyl amides, and ethers lead to alkoxylated products by substitution. Two mechanisms for these electrochemical alkoxylations are currently discussed. The first one consists of direct oxidation of the substrate to give the radical cation which reacts with the alcohol, followed by reoxidation of the intermediate radical and either alcoholysis or elimination of a proton to the final product. In the second mechanism the primary step is the oxidation of the alcoholate to give an alkoxyl radical which then reacts with the substrate, the consequent steps then being the same as above. The formation of quinone acetals in particular seems to proceed via the second mechanism. ... [Pg.94]

Oxidizing agents, e.g., quinones, which were shown to be able to retard oxidation [13] can function as antioxidants (via a chain breaking acceptor process, CB—A) if they can compete with oxygen for the alkyl radicals (Scheme 4). In the case of polymers, reaction 4a can... [Pg.106]

Transformation products of stabilizers formed during melt processing may exert either or both anti- and/ or pro-oxidant effects. For example, in the case of BHT, peroxydienones, PxD (reactions 9b, b") lead to pro-oxidant effects, due to the presence of the labile peroxide bonds, whereas quinonoid oxidation products, BQ, SQ, and G- (reaction 9 b, c, d) are antioxidants and are more effective than BHT as melt stabilizers for PP [29], The quinones are effective CB—A antioxidants and those which are stable in their oxidized and reduced forms (e.g., galvinoxyl, G-, and its reduced form, hydrogalvi-noxyl, HG) may deactivate both alkyl (CB—A mecha-... [Pg.112]

Any substance capable of reacting with free radicals to form products that do not reinitiate the oxidation reaction could be considered to function as free-radical traps. The quinones are known to scavenge alkyl free radicals. Many polynuclear hydrocarbons show activity as inhibitors of oxidation and are thought to function by trapping free radicals [25]. Addition of R to quinone or to a polynuclear compound on either the oxygen or nitrogen atoms produces adduct radicals that can undergo subsequent dimerization, disproportionation, or reaction with a second R to form stable products. [Pg.401]

The requirement for reduction prior to DNA alkylation and crosslinking was first demonstrated by Iyer and Szybalski in 1964 [29], and can be induced both by chemical reducing agents such as sodium dithionite and thiols in vitro and by various reductive enzymes such as DT-diaphorase (NAD(P)H-quinone oxidoreduc-tase) in vitro and in vivo [47]. Much work to characterize the mechanism of reductive activation and alkylation has been carried out, principally by the Tomasz and Kohn groups, and Figure 11.1 illustrates a generally accepted pathway for mitomycin C [16, 48-50] based on these experiments, which is very similar to the mechanism originally proposed by Iyer and Szybalski [29]. [Pg.401]

FREE-RADICAL ALKYLATION OF QUINONES 2-PHENOXYMETHYL-l,4-BENZOQUINONE... [Pg.68]


See other pages where Alkyl quinones is mentioned: [Pg.120]    [Pg.400]    [Pg.108]    [Pg.323]    [Pg.115]    [Pg.120]    [Pg.400]    [Pg.108]    [Pg.323]    [Pg.115]    [Pg.340]    [Pg.320]    [Pg.379]    [Pg.119]    [Pg.254]    [Pg.431]    [Pg.269]    [Pg.493]    [Pg.835]    [Pg.642]    [Pg.900]    [Pg.298]    [Pg.129]    [Pg.102]    [Pg.403]    [Pg.406]    [Pg.8]    [Pg.155]    [Pg.69]    [Pg.70]    [Pg.71]   
See also in sourсe #XX -- [ Pg.5 , Pg.821 ]

See also in sourсe #XX -- [ Pg.5 , Pg.821 ]




SEARCH



Quinones alkylation

© 2024 chempedia.info