Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkoxide oxidation

The structural analogies between metal oxides, metal-alkoxides and metal-alkoxide-oxide polymers originally noted for d° metal systems can be extended to metal-metal bonded systems. [Pg.255]

A], Alkoxide/oxide compounds of the speculated general formula BiO(OOCR) are formed by dissolving Bi203 in the carboxylic acid, followed by dilution and distillation of the excess acid (59). The compounds were characterized by elemental analysis and preliminary X-ray diffraction data. [Pg.308]

Iron, Fe2+ (d6) Iron, Fe2+ (d6) 4, tetrahedral 6, octahedral N-Thiolate O-Carboxylate, alkoxide, oxide, phenolate Electron transfer, nitrogen fixation in nitrogenases, electron transfer in oxidases... [Pg.4]

The anionic polymerization of epoxides such as ethylene and propylene oxides can be initiated by metal hydroxides, alkoxides, oxides, and amides as well as metal alkyls and aryls, including radical-anion species such as sodium naphthalene [Boileau, 1989 Dreyfuss and Drefyfuss, 1976 Inoue and Aida, 1984 Ishii and Sakai, 1969]. Thus the polymerization of ethylene oxide by M+A involves initiation... [Pg.548]

Cationic polymerization of alkylene oxides generally produces low molecular weight polymers, although some work [26] seems to indicate that this difficulty can be overcome by the presence of an alcohol (Fig. 1.3). Higher molecular weight polyethylene oxides can be prepared by a coordinated nucleophilic mechanism that employs such catalysts as alkoxides, oxides, carbonates, and carboxylates, or chelates of alkaline earth metals (Fig. 1.4). An aluminum-porphyrin complex is claimed to generate immortal polymers from alkylene oxides that are totally free from termination reaction [27]. [Pg.43]

Failure to add a HBr quencher may lead to the partial hydrolysis of the tin alkoxide and a lower yield in the selective oxidation. Excess of molecular sieves or stannylating agent employed in the formation of the tin alkoxide may operate as HBr quenchers during the tin alkoxide oxidation. [Pg.345]

Redox reactions of metal alkoxides Oxidation of organometallic compounds (method 7)... [Pg.28]

VII1.3. Alkoxides, oxides and hydroxides of cyclopentadienyl lanthanoids... [Pg.395]

Acetone in conjunction with benzene as a solvent is widely employed. With cyclohexanone as the hydrogen acceptor, coupled with toluene or xylene as solvent, the use of higher reaction temperatures is possible and consequently the reaction time is considerably reduced furthermore, the excess of cyclohexanone can be easily separated from the reaction product by steam distillation. At least 0 25 mol of alkoxide per mol of alcohol is used however, since an excess of alkoxide has no detrimental effect 1 to 3 mols of aluminium alkoxide is recommended, particularly as water, either present in the reagents or formed during secondary reactions, will remove an equivalent quantity of the reagent. In the oxidation of steroids 50-200 mols of acetone or 10-20 mols of cyclohexanone are generally employed. [Pg.886]

The widely used Moifatt-Pfltzner oxidation works with in situ formed adducts of dimethyl sulfoxide with dehydrating agents, e.g. DCC, AcjO, SO], P4O10, CCXTl] (K.E, Pfitzner, 1965 A.H. Fenselau, 1966 K.T. Joseph, 1967 J.G. Moffatt, 1971 D. Martin, 1971) or oxalyl dichloride (Swem oxidation M. Nakatsuka, 1990). A classical procedure is the Oppenauer oxidation with ketones and aluminum alkoxide catalysts (C. Djerassi, 1951 H. Lehmann, 1975). All of these reagents also oxidize secondary alcohols to ketones but do not attack C = C double bonds or activated C —H bonds. [Pg.133]

Wylation under neutral conditions. Reactions which proceed under neutral conditions are highly desirable, Allylation with allylic acetates and phosphates is carried out under basic conditions. Almost no reaction of these allylic Compounds takes place in the absence of bases. The useful allylation under neutral conditions is possible with some allylic compounds. Among them, allylic carbonates 218 are the most reactive and their reactions proceed under neutral conditions[13,14,134], In the mechanism shown, the oxidative addition of the allyl carbonates 218 is followed by decarboxylation as an irreversible process to afford the 7r-allylpalladium alkoxide 219. and the generated alkoxide is sufficiently basic to pick up a proton from active methylene compounds, yielding 220. This in situ formation of the alkoxide. which is a... [Pg.319]

The slow oxidation of primary alcohols, particularly MeOH, is utilized for the oxidation of allylic or secondary alcohols with allyl methyl carbonate without forming carbonates of the alcohols to be oxidized. Allyl methyl carbonate (564) forms 7r-allylpalladium methoxide, then exchange of the methoxide with a secondary or allylic alcohol 563 present in the reaction medium takes place to form the 7r-allylpalladium alkoxide 565, which undergoes elimination of j3-hydrogen to give the ketone or aldehyde 566. The lactol 567 was oxidized selectively with diallyl carbonate to the lactone 568 without attacking the secondary alcohol in the synthesis of echinosporin[360]. [Pg.366]

Dialkylaminoethyl acryhc esters are readily prepared by transesterification of the corresponding dialkylaminoethanol (102,103). Catalysts include strong acids and tetraalkyl titanates for higher alkyl esters and titanates, sodium phenoxides, magnesium alkoxides, and dialkyitin oxides, as well as titanium and zirconium chelates, for the preparation of functional esters. Because of loss of catalyst activity during the reaction, incremental or continuous additions may be required to maintain an adequate reaction rate. [Pg.156]

Difluoroethanol is prepared by the mercuric oxide cataly2ed hydrolysis of 2-bromo-l,l-difluoroethane with carboxyHc acid esters and alkaH metal hydroxides ia water (27). Its chemical reactions are similar to those of most alcohols. It can be oxidi2ed to difluoroacetic acid [381-73-7] (28) it forms alkoxides with alkaH and alkaline-earth metals (29) with alkoxides of other alcohols it forms mixed ethers such as 2,2-difluoroethyl methyl ether [461-57-4], bp 47°C, or 2,2-difluoroethyl ethyl ether [82907-09-3], bp 66°C (29). 2,2-Difluoroethyl difluoromethyl ether [32778-16-8], made from the alcohol and chlorodifluoromethane ia aqueous base, has been iavestigated as an inhalation anesthetic (30,31) as have several ethers made by addition of the alcohol to various fluoroalkenes (32,33). Methacrylate esters of the alcohol are useful as a sheathing material for polymers ia optical appHcations (34). The alcohol has also been reported to be useful as a working fluid ia heat pumps (35). The alcohol is available ia research quantities for ca 6/g (1992). [Pg.293]

Manufacture. Hydroxypivalyl hydroxypivalate may be produced by the esterification of hydroxypivaUc acid with neopentyl glycol or by the intermolecular oxidation—reduction (Tishchenko reaction) of hydroxypivaldehyde using an aluminum alkoxide catalyst (100,101). [Pg.375]

Alkyl hahdes in the presence of silver oxide react with alkyl malates to yield alkoxy derivatives of succinic acid, eg, 2-ethoxysuccinic acid, H00CCH2CH(0C2H )C00H (12,13). A synthetic approach to produce ethers of malic acid is the reaction of malic esters and sodium alkoxides which affords 2-alkoxysuccinic esters (14). [Pg.521]

Quantitative Analysis of All llithium Initiator Solutions. Solutions of alkyUithium compounds frequentiy show turbidity associated with the formation of lithium alkoxides by oxidation reactions or lithium hydroxide by reaction with moisture. Although these species contribute to the total basicity of the solution as determined by simple acid titration, they do not react with allyhc and henzylic chlorides or ethylene dibromide rapidly in ether solvents. This difference is the basis for the double titration method of determining the amount of active carbon-bound lithium reagent in a given sample (55,56). Thus the amount of carbon-bound lithium is calculated from the difference between the total amount of base determined by acid titration and the amount of base remaining after the solution reacts with either benzyl chloride, allyl chloride, or ethylene dibromide. [Pg.239]


See other pages where Alkoxide oxidation is mentioned: [Pg.202]    [Pg.592]    [Pg.6]    [Pg.202]    [Pg.1013]    [Pg.202]    [Pg.592]    [Pg.6]    [Pg.202]    [Pg.1013]    [Pg.18]    [Pg.24]    [Pg.126]    [Pg.275]    [Pg.294]    [Pg.413]    [Pg.434]    [Pg.111]    [Pg.250]    [Pg.325]    [Pg.364]    [Pg.510]    [Pg.3]    [Pg.191]    [Pg.316]    [Pg.94]    [Pg.456]    [Pg.330]    [Pg.361]   
See also in sourсe #XX -- [ Pg.71 ]




SEARCH



3- Bromo-l,2,4-triazine 2-oxide, reaction with alkoxides

Alkoxide-catalyzed oxidation

Alkoxide-oxide interface

Alkoxides, polymeric ethylene oxide polymerization

Aluminum alkoxide oxide)

Magnesium alkoxides, nitrile oxide

Oppenauer oxidation using aluminium alkoxides

Oxidation of Intermediate Alkyltin Alkoxides

Oxidation of alkoxide

Oxidation states alkoxides

Oxidations Using Sodium or Potassium Alkoxides

Oxide formation from metal alkoxides

Oxide-alkoxides

Oxide-alkoxides

SYNTHESIS OF COMPLEX OXIDES FROM METAL ALKOXIDES

© 2024 chempedia.info