Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkenes rate constants with

In laser-impulse experiments with chlorophenyldiazirine the carbene could be observed by UV spectroscopy. On addition of defined amounts of alkene the rate of cyclopropanation was measured directly. The rate constants with various alkenes were (lO moF s ) 1-hexene, 1.3 ( )-2-pentene, 34 2-methyl-2-butene, 77 2,3-dimethyl-2-butene, 130 (80JA7576>. [Pg.227]

A similar approach can be used for estimating rate constants with a variety of other organics such as alkenes, alcohols, and nitrates, although the agreement is not as good in many cases (Kwok and Atkinson, 1995). [Pg.184]

Alkenes such as ethylene (ehene, C2H4) have large reaction rate constants with OH among hydrocarbons, and have large contribution to photochemical ozone formation in urban air considering their mixing ratios. [Pg.189]

The chemically activated molecules are fonned by reaction of with the appropriate fliiorinated alkene. In all these cases apparent non-RRKM behaviour was observed. As displayed in figure A3.12.11 the measured imimolecular rate constants are strongly dependent on pressure. The large rate constant at high pressure reflects an mitial excitation of only a fraction of the total number of vibrational modes, i.e. initially the molecule behaves smaller than its total size. However, as the pressure is decreased, there is time for IVR to compete with dissociation and energy is distributed between a larger fraction of the vibrational modes and the rate constant decreases. At low pressures each rate constant approaches the RRKM value. [Pg.1036]

The N+ relationship, as discussed above, is a systematization of experimental facts. The equation of Scheme 7-4 has been applied to nearly 800 rate constants of over 30 electrophiles with about 80 anionic, neutral, and even cationic nucleophiles covering a range of measured rate constants between 10-8 and 109s 1 (Ritchie, 1978). Only about a dozen rate constants deviated from the predicted values by more than a factor of 10, and about fifty by factors in the range 5-10. It is therefore, very likely that this correlation is not purely accidental. Other workers have shown it to be valid for other systems, e.g., for ferrocenyl-stabilized cations (Bunton et al., 1980), for coordinated cyclic 7r-hydrocarbons (Alovosus and Sweigart, 1985), and for selectivities of diarylcarbenes towards alkenes (Mayr, 1990 Mayr et al., 1990). On the other hand, McClelland et al. (1986) found that the N+ relationship is not applicable to additions of less stable triphenylmethyl cations. [Pg.160]

Explicit mechanisms attempt to include all nonmethane hydrocarbons believed present in the system with an explicit representation of their known chemical reactions. Atmospheric simulation experiments with controlled NMHC concentrations can be used to develop explicit mechanisms. Examples of these are Leone and Seinfeld (164), Hough (165) and Atkinson et al (169). Rate constants for homogeneous (gas-phase) reactions and photolytic processes are fairly well established for many NMHC. Most of the lower alkanes and alkenes have been extensively studied, and the reactions of the higher family members, although little studied, should be comparable to the lower members of the family. Terpenes and aromatic hydrocarbons, on the other hand, are still inadequately understood, in spite of considerable experimental effort. Parameterization of NMHC chemistry results when NMHC s known to be present in the atmosphere are not explicitly incorporated into the mechanism, but rather are assigned to augment the concentration of NMHC s of similar chemical nature which the... [Pg.90]

Vrbaski and Cvetanovic (107) have found linear relationships between the logarithm of the rate constant for the reaction of various alkenes with electrophiles and the corresponding ionization potential. [Pg.120]

Addition of phosphonyl radicals onto alkenes or alkynes has been known since the sixties [14]. Nevertheless, because of the interest in organic synthesis and in the initiation of free radical polymerizations [15], the modes of generation of phosphonyl radicals [16] and their addition rate constants onto alkenes [9,12,17] has continued to be intensively studied over the last decade. Narasaka et al. [18] and Romakhin et al. [19] showed that phosphonyl radicals, generated either in the presence of manganese salts or anodically, add to alkenes with good yields. [Pg.47]

The rate constants for the 02 reaction do not vary significantly with different ligands (X = F, Cl, Br). The reaction of trans-[ r(CO)(CH3CN)(PPh3)2]1 with 102 is slightly slower than for the halide analogues.621 The peroxo compounds do not react with alkenes. [Pg.218]

The determination of large values of the rate constant ratio ks/kpfrom the low yields of alkene product that forms by partitioning of carbocations in nucleophilic solvents. These rate constant ratios may then be combined with absolute rate constants for the overall decay of the carbocation to give absolute values of kp (s ).14 16 For example, the reaction of the l-(4-methylphenyl)ethyl carbocation in 50/50 (v/v) trifluoroethanol/water gives mainly the solvent adducts and a 0.07% yield of 4-methylstyrene from proton transfer to solvent, which corresponds to kjkp = 1400. This can be combined with ks = 6 x 109 s V4 to give kp = 4.2 x 106 s l (Table 1). [Pg.69]

The quantitation of products that form in low yields requires special care with HPLC analyses. In cases where the product yield is <1%, it is generally not feasible to obtain sufficient material for a detailed physical characterization of the product. Therefore, the product identification is restricted to a comparison of the UV-vis spectrum and HPLC retention time with those for an authentic standard. However, if a minor reaction product forms with a UV spectrum and HPLC chromatographic properties similar to those for the putative substitution or elimination reaction, this may lead to errors in structural assignments. Our practice is to treat rate constant ratios determined from very low product yields as limits, until additional evidence can be obtained that our experimental value for this ratio provides a chemically reasonable description of the partitioning of the carbocation intermediate. For example, verification of the structure of an alkene that is proposed to form in low yields by deprotonation of the carbocation by solvent can be obtained from a detailed analysis of the increase in the yield of this product due to general base catalysis of carbocation deprotonation.14,16... [Pg.74]

Lloyd, A.C., Darnall, K.R., Winer, A.M., Pitts, Jr., J.N. (1976) Relative rate constants for reaction of the hydroxyl radical with a series of alkanes, alkenes, and aromatic hydrocarbons. J. Phys. Chem. 80, 189-794. [Pg.400]

The dependence of relative rates in radical addition reactions on the nucleophilicity of the attacking radical has also been demonstrated by Minisci and coworkers (Table 7)17. The evaluation of relative rate constants was in this case based on the product analysis in reactions, in which substituted alkyl radicals were first generated by oxidative decomposition of diacyl peroxides, then added to a mixture of two alkenes, one of them the diene. The final products were obtained by oxidation of the intermediate allyl radicals to cations which were trapped with methanol. The data for the acrylonitrile-butadiene... [Pg.624]

The pyridine ylide method also allows determination of the rate constants for the intermolecular reactions of carbenes with alkenes, alcohols, or other carbene... [Pg.55]

Here the alkene and pyridine will compete for the carbene at a constant concentration of pyridine the observed pseudo first order rate constant for ylide formation will increase with increasing alkene concentration. A plot of kobs vs. [alkene] will be linear with a slope of kad, which is the rate constant for the carbene/alkene addition reaction affording cyclopropane 5 (Scheme 1). [Pg.56]

In pentane, the distribution of 1,3-insertion product 25 to 1,2-Me shift product 26 is 91 9. Upon addition of 2-methyl-1-butene, the yield of 25 smoothly decreases (to 19% with 4 M alkene), but the yield of 26 is unaffected 1 Moreover, correlation of addn/l,3-CH insertion (to 25) for 18 is nicely linear. The simplest interpretation is that 25 comes directly from carbene 18, whereas the 1,2-Me shift product 26 comes from the excited diazirine.27 Interestingly, thermolysis of 24 at 79°C produces 90% of 25 and 10% of 26, but now the yields of both products smoothly decrease in the presence of an alkene. In thermolysis the (electronically) excited diazirine is unavailable, both 25 and 26 stem from the carbene, and their formation is suppressed by the alkene s interception of the carbene. A pyridine ylide kinetic study gave the 1,3-CH insertion rate constant (18 - 25) as 9.3 x 10s s"1.27-47... [Pg.64]

Figure 8.15 The rate constant of a pseudo-order reaction varies with the concentration of the reactant in excess graph of k (as V) against [alkene]0 (as V). The data refer to the formation of a 1,2-diol by the dihydrolysis of an alkene with osmium tetroxide. The gradient of the graph yields k2, with a value of 3.2 x 10 2 dm3 mol-1 s-1... Figure 8.15 The rate constant of a pseudo-order reaction varies with the concentration of the reactant in excess graph of k (as V) against [alkene]0 (as V). The data refer to the formation of a 1,2-diol by the dihydrolysis of an alkene with osmium tetroxide. The gradient of the graph yields k2, with a value of 3.2 x 10 2 dm3 mol-1 s-1...

See other pages where Alkenes rate constants with is mentioned: [Pg.321]    [Pg.24]    [Pg.88]    [Pg.293]    [Pg.193]    [Pg.154]    [Pg.82]    [Pg.1039]    [Pg.532]    [Pg.249]    [Pg.240]    [Pg.68]    [Pg.71]    [Pg.77]    [Pg.103]    [Pg.213]    [Pg.214]    [Pg.283]    [Pg.581]    [Pg.597]    [Pg.605]    [Pg.328]    [Pg.623]    [Pg.625]    [Pg.1089]    [Pg.269]    [Pg.393]    [Pg.391]   
See also in sourсe #XX -- [ Pg.3 , Pg.189 , Pg.207 , Pg.214 , Pg.294 ]




SEARCH



Alkenes rate constants

Constants with

© 2024 chempedia.info