Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkenes palladium® chloride

The reaction is highly exothermic as one might expect for an oxidation reaction. The mechanism is shown in Figure 15.1. Palladium chloride is the catalyst, which occurs as the tetrachloropalladate in solution, the resting state of the catalyst. Two chloride ions are replaced by water and ethene. Then the key-step occurs, the attack of a second water molecule (or hydroxide) to the ethene molecule activated towards a nucleophilic attack by co-ordination to the electrophilic palladium ion. The nucleophilic attack of a nucleophile on an alkene coordinated to palladium is typical of Wacker type reactions. [Pg.321]

While hydrosilylation of 1-alkenes and HSiCl3 with platinum catalysts provides linear products (1-trichlorosilylalkanes), palladium chloride modified with phosphines gives products carrying the trichlorosilyl group at the secondary carbon. This is highly remarkable because all other metal complexes studied so far lead to 1-substituted products. This regioselectivity leads to the possibility to carry out asymmetric hydrosilylation. [Pg.378]

Palladium catalysts are more often modified for special selectivities than platinum catalysts. Palladium prepared by reduction of palladium chloride with sodium borohydride Procedure 4, p. 205) is suitable for the reduction of unsaturated aldehydes to saturated aldehydes [i7]. Palladimn on barium sulfate deactivated with sulfur compounds, most frequently the so-called quinoline-5 obtained by boiling quinoline with sulfur [34], is suitable for the Rosenmund reduction [i5] (p. 144). Palladium on calcium carbonate deactivated by lead acetate Lindlar s catalyst) is used for partial hydrogenation of acetylenes to cw-alkenes [36] (p. 44). [Pg.7]

Alkenes can be converted to succinic esters by reaction with carbon monoxide, an alcohol, and palladium chloride in the presence of mercuric chloride.1,12 The addition is mostly syn. In similar reaction, both terminal and internal alkynes can be converted to esters of maleic acid. [Pg.878]

The effect of the nature of the electrophile on the stereoselectivity of reactions with substrates containing a terminal alkene and an allylic substituent is dramatically illustrated by some recent results with palladium electrophiles.124 Cyclizations of 3-methyl- or 3-phenyl-5-hydroxyalkenes with palladium catalysts proceed with high selectivity (>9 1) for the 2,3-trans isomer (equation 41).50-124 It is suggested that the steric interactions of the palladium-alkene complex affects the stereochemistry of these cyclizations. In some related cyclizations to form tetrahydropyran products (equation 42 and Table 10), reaction with iodine in the presence of sodium bicarbonate gives a different major diastereomer from cyclization with mercury(II) trifluoroacetate or palladium chloride.123... [Pg.380]

Cyclizations with nitrogen nucleophiles involving alkynes and allenes have received little attention until recently. The cyclizations of several a-aminoallenes to 3-pyrrolines with silver tetrafluoroborate was reported by Claesson and coworkers (equation 133).264 A similar cyclization to form A -carba-penems has been reported (equation 134).265 Diastereomeric allenes (R1 R2) were shown to cyclize with complete stereocontrol. Cyclization with palladium chloride in the presence of allyl bromide or electrophilic alkenes allowed for the intermediate vinylpalladium species to be trapped by the electrophile.2651 A related product was obtained by cyclization of an alkynic substrate (equation 13S).265 Other examples of 5-endo cyclization of p-aminoalkynes50 include the formation of indoles by cyclization of 2-alkynylanilines with mercury salts200 or palladium chloride,266a,266b,266c formation of 1-pyrrolines with catalytic palladium chloride (equation 136)198 and formation of pyrroles by cyclization of hydroxy-substituted p-aminoalkynes.198,2666... [Pg.411]

Terminal monoalkenes were alkylated by stabilized carbanions (p a 10-18) in the presence of 1 equiv. of palladium chloride and 2 equiv. of triethylamine, at low temperatures (Scheme l).1 The resulting unstable hydride eliminate to give the alkene (path b), or treated with carbon monoxide and methanol to produce the ester (path c).2 As was the case with heteroatom nucleophiles, attack at the more substituted alkene position predominated, and internal alkenes underwent alkylation in much lower (=30%) yield. In the absence of triethylamine, the yields were very low (1-2%) and reduction of the metal by the carbanion became the major process. Presumably, the tertiary amine ligand prevented attack of the carbanion at the metal, directing it instead to the coordinated alkene. The regiochemistry (predominant attack at the more sub-... [Pg.571]

Normally, the most practical vinyl substitutions are achieved by use of the oxidative additions of organic bromides, iodides, diazonium salts or triflates to palladium(0)-phosphine complexes in situ. The organic halide, diazonium salt or triflate, an alkene, a base to neutralize the acid formed and a catalytic amount of a palladium(II) salt, usually in conjunction with a triarylphosphine, are the usual reactants at about 25-100 C. This method is useful for reactions of aryl, heterocyclic and vinyl derviatives. Acid chlorides also react, usually yielding decarbonylated products, although there are a few exceptions. Likewise, arylsulfonyl chlorides lose sulfur dioxide and form arylated alkenes. Aryl chlorides have been reacted successfully in a few instances but only with the most reactive alkenes and usually under more vigorous conditions. Benzyl iodide, bromide and chloride will benzylate alkenes but other alkyl halides generally do not alkylate alkenes by this procedure. [Pg.835]

Several examples of the cyclization of indole derivatives with alkenic side chains in the 3-position have been reported.6 In these examples, palladium chloride in combination with silver tetrafluoroborate is the cyclizing agent. The palladium tetrafluoroborate, presumably formed, should be a very reactive palladating species and probably is the reason why these reactions proceed at room temperature, although the mechanism is not yet completely clear. These reactions were worked up reductively (by addition of sodium borohydride) in order to reduce the expected alkenic product or any relatively stable organopalladium complexes that may have been formed (equation 4).6... [Pg.836]

Benzoic acid and its derivatives orthothallate. Reaction of o-carboxyphenylthallium bis(trifluoroace-tate) with palladium chloride and alkenes followed by base treatment yields isocoumarin derivatives (equation 15).41 Cyclization does not occur until base is added in the second step. [Pg.841]

When either an alcohol or an amine function is present in the alkene, the possibility for lactone or lactam formation exists. Cobalt or rhodium catalysts convert 2,2-dimethyl-3-buten-l-ol to 2,3,3-trimethyl- y-butyrolactone, with minor amounts of the 8-lactone being formed (equation 51).2 In this case, isomerization of the double bond is not possible. The reaction of allyl alcohols catalyzed by cobalt or rhodium is carried out under reaction conditions that are severe, so isomerization to propanal occurs rapidly. Running the reaction in acetonitrile provides a 60% yield of lactone, while a rhodium carbonyl catalyst in the presence of an amine gives butane-1,4-diol in 60-70% (equation 52).8 A mild method of converting allyl and homoallyl alcohols to lactones utilizes the palladium chloride/copper chloride catalyst system (Table 6).79,82 83... [Pg.941]

Although these catalytic partial hydrogenations of alkynes may well be regarded as the procedure of choice for (Z)-alkenes,25 other catalytic systems have been explored. These include a sodium hydride-sodium alkoxide-nickel(n) acetate reagent,26 and a sodium borohydride-palladium chloride-polyethylene glycol system.27 Diisobutylaluminium hydride (DIBAL) has also been used for the conversion of alkynes into (Z)-alkenes.28 ( )-Alkenes are formed when the internal triple bond is reduced with sodium in liquid ammonia.29... [Pg.494]

To overcome the problems encountered in the homogeneous Wacker oxidation of higher alkenes several attempts have been undertaken to develop a gas-phase version of the process. The first heterogeneous catalysts were prepared by the deposition of palladium chloride and copper chloride on support materials, such as zeolite Y [2,3] or active carbon [4]. However, these catalysts all suffered from rapid deactivation. Other authors applied other redox components such as vanadium pentoxide [5,6] or p-benzoquinone [7]. The best results have been achieved with catalysts based on palladium salts deposited on a monolayer of vanadium oxide spread out over a high surface area support material, such as y-alumina [8]. Van der Heide showed that with catalysts consisting of H2PdCU deposited on a monolayer vanadium oxide supported on y-alumina, ethene as well as 1-butene and styrene... [Pg.433]

The palladium-catalyzed reaction of allyl chloride 11 with the benzyne precursor 104 to produces phenanthrene derivatives 131 is also known [83]. A plausible mechanism for this intermolecular benzyne-benzyne-alkene insertion reaction is shown in Scheme 38. Initially n-allyl palladium chloride la is formed from Pd(0) and 11. Benzyne 106, which is generated from the reaction of CsF and 104, inserted into la to afford the aryl palladium intermediate 132. A second benzyne insertion into 132 produce 133 and subsequent carbopalladation to the alkene afford the cyclized intermediate 134. f>- Iydride elimination from 134 followed by isomerization gave 9-methylphenanthrene 131. [Pg.110]

Simple terminal alkenes or tranx-disubstituted alkenes gave good yields of the formal addition product when three equivalents of a secondary amine (dimethyl- or diethyl-, but not diisopropylamine) and bis(benzonitrilc)palladium chloride were used at low temperature, after reduction of the C-Pd bond. The yields were modest to very low with (Z)- or cyclic alkenes and using primary amines9, l0. [Pg.860]

PdCl2/CuCl2/02 (Wacker oxidation) (palladium chloride/cupric chloride/oxygen) Sulpholane/water RT to 100 terminal alkenes-> methyl ketones... [Pg.287]

Benzyl esters and carbamates in the presence of other easily reducible groups such as aryl bromides, cyclopropanes, and alkenes are selectively cleaved with tri-ethylsilane and palladium chloride. ... [Pg.60]

In combination with the incremental advances concerning reaction conditions in recent years, especially for low-pressure carbonylations, there is a trend toward increasing use of this chemistry to synthesize advanced building blocks. In this respect carboxylation of alkenes with an appropriate alcohol or amine function leads to the formation of lactones or lactams. Thus, cobalt, rhodium, or palladium chloride/copper chloride catalysts convert allyl and homoallyl alcohols or amines to the corresponding butyrolactones or butyrolactams, respectively [15]. [Pg.185]

Photochemical decomposition of diazo(trimethylsilyl)methane (1) in the presence of alkenes has not been thoroughly investigated (see Houben-Weyl Vol. E19b, p 1415). The available experimental data [trimethylsilylcyclopropane (17% yield) and la,2a,3j8-2,3-dimethyl-l-trimethylsilylcyclopropane (23% yield)] indicate that cyclopropanation occurs only in low yield with ethene and ( )-but-2-ene. In both cases the formal carbene dimer is the main product. In reactions with other alkenes, such as 2,3-dimethylbut-2-ene, tetrafluoroethene or hexafluoro-propene, no cyclopropanes could be detected.The transition-metal-catalyzed decomposition of diazo(trimethylsilyl)methane (1) has been applied to the synthesis of many different silicon-substituted cyclopropanes (see Table 3 and Houben-Weyl Vol.E19b, p 1415) 3.20a,b,2i.25 ( iQp. per(I) chloride has been most commonly used for carbene transfer to ethyl-substituted alkenes, cycloalkenes, styrene, and related arylalkenes. For the cyclopropanation of acyl-substituted alkenes, palladium(II) chloride is the catalyst of choice, while palladium(II) acetate was less efficient, and copper(I) chloride, copper(II) sulfate and rhodium(II) acetate dimer were totally unproductive. The cyclopropanation of ( )-but-2-ene represents a unique... [Pg.821]

The selectivity of palladium and gold for alkene oxidation to aldehydes 28,29,170) was attributed initially to adsorption strength. However, electrooxidation in the presence of palladium ions indicates possible homogeneous alkene insertion, similar to the Wacker process 304). Homogeneous reaction is also involved in redox oxidations of hydrocarbons. In this case, the nature of the metal ions is expected to control selectivity. Indeed, toluene yields 20% benzaldehyde in electrolytes containing Ce salts, while oxidation proceeds to benzoic acid with Cr redox catalysts 311). In addition, the concentration of redox catalysts appears to affect yields in nonelectrochemical oxidation of ethylene large amounts of palladium chloride promote butene formation at the expense of acetaldehyde 312). Finally, the role of the electrolyte and solvent should not be ignored. For instance, electrooxidation of ethylene on carbon, in aqueous solution of acetic acid yields acetaldehyde 313) in the... [Pg.282]

Lead tetraacetate initiates a similar type of oxidation with terminal alkenes, in the presence of acid, to give an aldehyde hy selective oxidation of the terminal carhon. l Ajj example is the conversion of styrene to phenylacetaldehyde in 98% yield. Palladium chloride (PdCl2) reacts with terminal alkenes, in the presence of oxygen and copper salts, to give a methyl ketone (this reaction is called the Wacker process and is discussed in sec. 12.6.A). It is more useful than the LTA oxidation. Oxidation of terminal alkenes with LTA leads to the aldehyde, whereas oxidation with PdCl2 leads to the methyl ketone. The PdCl2 oxidation is illustrated hy conversion of 402 to 403 in 77% yield, in Ikegami s synthesis of coriolin. ... [Pg.279]

The best reagent for selective reduction of alkynes to the cis alkene is the Lindlar catalyst.3 1 Palladium chloride (PdCl2) was precipitated on calcium carbonate (CaCOs) in acidic media and deactivated with lead tetraacetate [Pb(OAc)4] to give the named Pd-CaC03-Pb0 catalyst. Reduction of alkynes will stop at the cis alkene with little or no cis-trans isomerization. A variation uses quinoline as a poison, and this catalyst was used by Overman and co-workers to convert alkyne 378 to cis-alkene 379 as part of a synthesis of... [Pg.381]

A typical reaction involving nickel(O) treats an allylic halide such as 3-chloro-2-methyl-l-propene with Ni(CO)4 to form 439,288 a nickel dimer analogous to the palladium chloride dimer discussed in the previous section. This complex reacts with an alkene to form a new complex (440), and subsequent reaction with a variety of electrophilic reagents removes nickel. In this example, the chlorine was converted to an acetate ligand (in 441) and reacted with methanolic carbon monoxide to give the ester (442).288... [Pg.1125]


See other pages where Alkenes palladium® chloride is mentioned: [Pg.313]    [Pg.313]    [Pg.313]    [Pg.313]    [Pg.59]    [Pg.202]    [Pg.98]    [Pg.1538]    [Pg.317]    [Pg.840]    [Pg.171]    [Pg.95]    [Pg.95]    [Pg.1062]    [Pg.1774]    [Pg.276]    [Pg.144]    [Pg.170]    [Pg.1119]    [Pg.1120]   
See also in sourсe #XX -- [ Pg.502 ]




SEARCH



Chlorides alkenes

Palladium alkenes

Palladium chloride

© 2024 chempedia.info