Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkenes olefin regioselectivity

The mechanism for the reaction catalyzed by cationic palladium complexes (Scheme 24) differs from that proposed for early transition metal complexes, as well as from that suggested for the reaction shown in Eq. 17. For this catalyst system, the alkene substrate inserts into a Pd - Si bond a rather than a Pd-H bond [63]. Hydrosilylation of methylpalladium complex 100 then provides methane and palladium silyl species 112 (Scheme 24). Complex 112 coordinates to and inserts into the least substituted olefin regioselectively and irreversibly to provide 113 after coordination of the second alkene. Insertion into the second alkene through a boat-like transition state leads to trans cyclopentane 114, and o-bond metathesis (or oxidative addition/reductive elimination) leads to the observed trans stereochemistry of product 101a with regeneration of 112 [69]. [Pg.241]

Extension of the above oxidation studies to alkenes such as limonene gave a complex mixture of products that resulted from all possible ene reactions to the trisubstituted double bond (Fig. 30) [165], However, use of NaY zeolite as the microreactor and in the presence of a small amount of pyridine, the photosensitized oxidation of the alkenes is regioselective, yielding only the cis and trans products that result from hydrogen abstraction from the least hindered allylic carbon center. These studies illustrated that a microreactor can provide unprecedented opportunities to conduct selective oxidation of olefins. [Pg.356]

The coupling of bromo- or iodobenzene to styrene yields regioselectively a mixture of E- and Z-stilbenes 12 and 13. An electron-withdrawing substituent at the olefinic double bond often improves the regioselectivity, while an electron-donor-substituted alkene gives rise to the formation of regioisomers. [Pg.156]

Products 7a and 7c, with the substituent R a to the carbonyl group, are by far predominantly formed. This regioselectivity is a result of the preferential approach of the alkene 2 to the dicobalthexacarbonyl-alkyne complex 5 from the side opposite to the substituent R of the original alkyne. The actual incorporation of the alkene however is less selective with respect to the orientation of the olefinic substituent R, thus leading to a mixture of isomers 7a and 7c. [Pg.224]

The Markovnikov regioselectivity of the gem-alkenes is associated with a chemoselectivity. in favour of methanol attack, significantly greater than that observed for the other alkenes. If no sodium bromide is added to the reaction medium, no dibromide is observed for this series. Therefore, these alkenes behave as highly conjugated olefins, as regards their regio- and chemo-selectivity. In other words, the bromination intermediates of gem-alkenes resemble P-bromocarbocations, rather than bromonium ions. Theoretical calculations (ref. 8) but not kinetic data (ref. 14) support this conclusion. [Pg.108]

Enynes 71 react with aldehydes 61 in the presence of the [Ni(COD)J/SIPr catalytic system to afford two distinct products 72 and 73 (Scheme 5.20) [20b], The enone 72 is derived from aldehyde addition with the alkyne moiety while the adduct 73 arises from the aldehyde addition with the alkene moiety. The product distribution is dependent on the substituent on either the alkyne or alkene moieties. The reaction between 71 and ketones 74 led to the unprecedented formation of pyrans 75 (Scheme 5.20). The reaction showed to be highly regioselective in aU the cases, the carbonyl carbon was bound to the olefin. [Pg.142]

The addition of hydrogen halide to alkene is another classical electrophilic addition of alkene. Although normally such reactions are carried out under anhydrous conditions, occasionally aqueous conditions have been used.25 However, some difference in regioselectivity (Markovnikov and anti-Markovnikov addition) was observed. The addition product formed in an organic solvent with dry HBr gives exclusively the 1-Br derivative whereas with aq. HBr, 2-Br derivative is formed. The difference in the products formed by the two methods is believed to be due primarily to the difference in the solvents and not to the presence of any peroxide in the olefin.26... [Pg.47]

A catalyst used for the u-regioselective hydroformylation of internal olefins has to combine a set of properties, which include high olefin isomerization activity, see reaction b in Scheme 1 outlined for 4-octene. Thus the olefin migratory insertion step into the rhodium hydride bond must be highly reversible, a feature which is undesired in the hydroformylation of 1-alkenes. Additionally, p-hydride elimination should be favoured over migratory insertion of carbon monoxide of the secondary alkyl rhodium, otherwise Ao-aldehydes are formed (reactions a, c). Then, the fast regioselective terminal hydroformylation of the 1-olefin present in a low equilibrium concentration only, will lead to enhanced formation of n-aldehyde (reaction d) as result of a dynamic kinetic control. [Pg.460]

Trost reported the synthesis of 1,4-dienes with ruthenium catalysis through regioselective carbometallation of alkynes with alkenes.51 Di- and trisubstituted olefins can also be obtained with arylboronic acids through an intermolecular process under rhodium,30 52 55 nickel,56 and palladium catalysis.57 Recently, Larock has reported an efficient palladium-catalyzed route for the preparation of tetrasubstituted olefins.58,59... [Pg.304]

The uncatalyzed hydroboration-oxidation of an alkene usually affords the //-Markovnikov product while the catalyzed version can be induced to produce either Markovnikov or /z/z-Markovnikov products. The regioselectivity obtained with a catalyst has been shown to depend on the ligands attached to the metal and also on the steric and electronic properties of the reacting alkene.69 In the case of monosubstituted alkenes (except for vinylarenes), the anti-Markovnikov alcohol is obtained as the major product in either the presence or absence of a metal catalyst. However, the difference is that the metal-catalyzed reaction with catecholborane proceeds to completion within minutes at room temperature, while extended heating at 90 °C is required for the uncatalyzed transformation.60 It should be noted that there is a reversal of regioselectivity from Markovnikov B-H addition in unfunctionalized terminal olefins to the anti-Markovnikov manner in monosubstituted perfluoroalkenes, both in the achiral and chiral versions.70,71... [Pg.843]

The /Tamino alcohol structural unit is a key motif in many biologically important molecules. It is difficult to imagine a more efficient means of creating this functionality than by the direct addition of the two heteroatom substituents to an olefin, especially if this transformation could also be in regioselective and/ or enantioselective fashion. Although the osmium-mediated75 or palladium-mediated76 aminohydroxylation of alkenes has been studied for 20 years, several problems still remain to be overcome in order to develop this reaction into a catalytic asymmetric process. [Pg.232]

Copper-catalyzed monoaddition of hydrogen cyanide to conjugated alkenes proceeded very conveniently with 1,3-butadiene, but not with its methyl-substituted derivatives. The most efficient catalytic system consisted of cupric bromide associated to trichloroacetic acid, in acetonitrile at 79 °C. Under these conditions, 1,3-butadiene was converted mainly to (Z )-l-cyano-2-butene, in 68% yield. A few percents of (Z)-l-cyano-2-butene and 3-cyano-1-butene (3% and 4%, respectively) were also observed. Polymerization of the olefinic products was almost absent. The very high regioselectivity in favor of 1,4-addition of hydrogen cyanide contrasted markedly with the very low regioselectivity of acetic acid addition (vide supra). Methyl substituents on 1,3-butadiene decreased significantly the efficiency of the reaction. With isoprene and piperylene, the mononitrile yields were reduced... [Pg.556]

Because the addition steps are generally fast and consequently exothermic chain steps, their transition states should occur early on the reaction coordinate and therefore resemble the starting alkene. This was recently confirmed by ab initio calculations for the attack at ethylene by methyl radicals and fluorene atoms. The relative stability of the adduct radicals therefore should have little influence on reacti-vity 2 ). The analysis of reactivity and regioselectivity for radical addition reactions, however, is even more complex, because polar effects seem to have an important influence. It has been known for some time that electronegative radicals X-prefer to react with ordinary alkenes while nucleophilic alkyl or acyl radicals rather attack electron deficient olefins e.g., cyano or carbonyl substituted olefins The best known example for this behavior is copolymerization This view was supported by different MO-calculation procedures and in particular by the successful FMO-treatment of the regioselectivity and relative reactivity of additions of radicals to a series of alkenes An excellent review of most of the more recent experimental data and their interpretation was published recently by Tedder and... [Pg.26]

Cycloaddition of a nitrile oxide to a substituted olefin can lead to two regio-isomers, the 4- and/or 5-substituted 2-isoxazoline. Reactions of monosubstituted alkenes give the 5-substituted isomers 18 with almost complete regioselectivity (10,15,30,109). This result is also supported by ab initio and FMO calculations (114,119). Change of substituents in the dipole has little effect on the regioselectivity of such reactions when monosubstituted alkenes are used (Table 6.4). [Pg.380]


See other pages where Alkenes olefin regioselectivity is mentioned: [Pg.781]    [Pg.628]    [Pg.134]    [Pg.132]    [Pg.313]    [Pg.192]    [Pg.112]    [Pg.233]    [Pg.76]    [Pg.218]    [Pg.245]    [Pg.115]    [Pg.459]    [Pg.23]    [Pg.383]    [Pg.899]    [Pg.67]    [Pg.22]    [Pg.546]    [Pg.560]    [Pg.430]    [Pg.497]    [Pg.49]    [Pg.177]    [Pg.564]    [Pg.227]    [Pg.72]    [Pg.184]    [Pg.523]    [Pg.844]    [Pg.108]    [Pg.109]    [Pg.266]    [Pg.575]   
See also in sourсe #XX -- [ Pg.381 , Pg.382 , Pg.383 , Pg.384 ]

See also in sourсe #XX -- [ Pg.381 , Pg.382 , Pg.383 , Pg.384 ]




SEARCH



Alkenes regioselectivity

Olefins regioselectivity

© 2024 chempedia.info