Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkenes from enol ethers

In 1996, the first successful combination of an enzymatic with a nonenzymatic transformation within a domino process was reported by Waldmann and coworkers [6]. These authors described a reaction in which functionalized bicy-clo[2.2.2]octenediones were produced by a tyrosinase (from Agaricus bisporus) -catalyzed oxidation of para-substituted phenols, followed by a Diels-Alder reaction with an alkene or enol ether as dienophile. Hence, treatment of phenols such as 8-1 and an electron-rich alkene 8-4 in chloroform with tyrosinase in the presence of oxygen led to the bicyclic cycloadducts 8-5 and 8-6 in moderate to good yield (Scheme 8.1). It can be assumed that, in the first step, the phenol 8-1 is hydroxylated by tyrosinase, generating the catechol intermediate 8-2, which is then again oxidized enzy-... [Pg.530]

Alkenes are scavengers that are able to differentiate between carbenes (cycloaddition) and carbocations (electrophilic addition). The reactions of phenyl-carbene (117) with equimolar mixtures of methanol and alkenes afforded phenylcyclopropanes (120) and benzyl methyl ether (121) as the major products (Scheme 24).51 Electrophilic addition of the benzyl cation (118) to alkenes, leading to 122 and 123 by way of 119, was a minor route (ca. 6%). Isobutene and enol ethers gave similar results. The overall contribution of 118 must be more than 6% as (part of) the ether 121 also originates from 118. Alcohols and enol ethers react with diarylcarbenium ions at about the same rates (ca. 109 M-1 s-1), somewhat faster than alkenes (ca. 108 M-1 s-1).52 By extrapolation, diffusion-controlled rates and indiscriminate reactions are expected for the free (solvated) benzyl cation (118). In support of this notion, the product distributions in Scheme 24 only respond slightly to the nature of the n bond (alkene vs. enol ether). The formation of free benzyl cations from phenylcarbene and methanol is thus estimated to be in the range of 10-15%. However, the major route to the benzyl ether 121, whether by ion-pair collapse or by way of an ylide, cannot be identified. [Pg.15]

The [2 + 2]-photocycloaddition of nonconjugated alkenes was described in Chapter 5. This strategy can be used for synthesizing macrocyclic rings by using a long linker between the two alkene moieties (Scheme 9.47). Thus, bicyclic cyclobutanes can be obtained starting from enol ethers and cinnamates by means of electron-transfer sensitizers, such as DCN or DCA [80], and triplet photosensitizers such as benzo-phenone (BP) [81]. [Pg.311]

The reactivity of these heterocycles towards hydrogen atom abstraction at C-2 has been shown to increase in the expected order, from 1,3-dioxane, through 1,3-oxathiane, to 1,3-dithiane. Hydrogen atom abstraction from C-2 in 4-methyl-1,3-dioxane, 2,4-dimethyl-1,3-dioxane, and 2-ethyl-4-methyl-1,3-dioxane has also been investigated <77MI 608-01 >. The radical-mediated alkylation of 2-stannyl-l,3-dithianes (67) with alkenes and enol ethers has been observed (Equation (30)) <92CL1229>. [Pg.437]

Scheme 7.19 E- and Z-selective asymmetric ring-opening cross-metathesis of oxabicyclic alkenes with enol ethers and aryl olefins. From Ref [81]. Scheme 7.19 E- and Z-selective asymmetric ring-opening cross-metathesis of oxabicyclic alkenes with enol ethers and aryl olefins. From Ref [81].
Scheme 7.20 Possible pathways and computed activation energies of the Ru-catalyzed ROCM of oxabicyclic alkenes and enol ethers. From Ref [80]. Scheme 7.20 Possible pathways and computed activation energies of the Ru-catalyzed ROCM of oxabicyclic alkenes and enol ethers. From Ref [80].
Other Reactions Oxallyls, formed from a,a -dibromoketones and Fe2(CO)9, react with alkenes, enamines, enol ethers, amides, or dienes to give a variety of [3 + 2] and [3 + 4] cycloaddition products (Eq. 14.71). This provides a very short synthesis of the tropane skeleton from acetone and pyrrole (Eq. 14.72). As shown in Eq. 14.71, an oxallyl resembles trimeth-ylenemethane (5.22) except that one =CH2 of 5.22 is replaced by =0. [Pg.395]

The 7, i5-unsaturated alcohol 99 is cyclized to 2-vinyl-5-phenyltetrahydro-furan (100) by exo cyclization in aqueous alcohol[124]. On the other hand, the dihydropyran 101 is formed by endo cyclization from a 7, (5-unsaturated alcohol substituted by two methyl groups at the i5-position. The direction of elimination of /3-hydrogen to give either enol ethers or allylic ethers can be controlled by using DMSO as a solvent and utilized in the synthesis of the tetronomycin precursor 102[125], The oxidation of the optically active 3-alkene-l,2-diol 103 affords the 2,5-dihydrofuran 104 in high ee. It should be noted that /3-OH is eliminated rather than /3-H at the end of the reac-tion[126]. [Pg.35]

Hydroperoxides have been obtained from the autoxidation of alkanes, aralkanes, alkenes, ketones, enols, hydrazones, aromatic amines, amides, ethers, acetals, alcohols, and organomineral compounds, eg, Grignard reagents (10,45). In autoxidations involving hydrazones, double-bond migration occurs with the formation of hydroperoxy—azo compounds via free-radical chain processes (10,59) (eq. 20). [Pg.105]

In 1959 Carboni and Lindsay first reported the cycloaddition reaction between 1,2,4,5-tetrazines and alkynes or alkenes (59JA4342) and this reaction type has become a useful synthetic approach to pyridazines. In general, the reaction proceeds between 1,2,4,5-tetrazines with strongly electrophilic substituents at positions 3 and 6 (alkoxycarbonyl, carboxamido, trifluoromethyl, aryl, heteroaryl, etc.) and a variety of alkenes and alkynes, enol ethers, ketene acetals, enol esters, enamines (78HC(33)1073) or even with aldehydes and ketones (79JOC629). With alkenes 1,4-dihydropyridazines (172) are first formed, which in most cases are not isolated but are oxidized further to pyridazines (173). These are obtained directly from alkynes which are, however, less reactive in these cycloaddition reactions. In general, the overall reaction which is presented in Scheme 96 is strongly... [Pg.50]

Examine the eleetrostatic potential map of eaeh nueleophile (enamine, silyl enol ether, lithium enolate and enol) with emphasis on the face of the nucleophilic alkene carbon. Rank the nucleophiles from most electron rich to least electron rich. What factors are responsible for this order (Hint For each molecule, consider an alternative Lewis structure to that given above that places a negative charge on the nucleophilic carbon.)... [Pg.166]

For those substrates more susceptible to nucleophilic attack (e.g., polyhalo alkenes and alkenes of the type C=C—Z), it is better to carry out the reaction in basic solution, where the attacking species is RO . The reactions with C=C—Z are of the Michael type, and OR goes to the side away from the Z. Since triple bonds are more susceptible to nucleophilic attack than double bonds, it might be expected that bases would catalyze addition to triple bonds particularly well. This is the case, and enol ethers and acetals can be produced by this reaction. Because enol ethers are more susceptible than triple bonds to electrophilic attack, the addition of alcohols to enol ethers can also be catalyzed by acids. " One utilization of this reaction involves the compound dihydropyran... [Pg.996]

Apart from the role of substituents in determining regioselectivity, several other structural features affect the reactivity of dipolarophiles. Strain increases reactivity norbornene, for example, is consistently more reactive than cyclohexene in 1,3-DCA reactions. Conjugated functional groups usually increase reactivity. This increased reactivity has most often been demonstrated with electron-attracting substituents, but for some 1,3-dipoles, enol ethers, enamines, and other alkenes with donor substituents are also quite reactive. Some reactivity data for a series of alkenes with several 1,3-dipoles are given in Table 10.6 of Part A. Additional discussion of these reactivity trends can be found in Section 10.3.1 of Part A. [Pg.529]

This regiochemistry is consistent with the electrophilic character of Pd(II) in the addition step. Solvent and catalyst composition can affect the regiochemistry of the Wacker reaction. Use of /-butanol as the solvent was found to increase the amount of aldehyde formed from terminal alkenes, and is attributed to the greater steric requirement of /-butanol. Hydrolysis of the enol ether then leads to the aldehyde. [Pg.710]

Enol ether protons are interesting in that their chemical shifts are unusually high field in comparison with other alkenes on account of lone pair donation into the double bond from oxygen (Structure 5.5). No special precautions are necessary when dealing with them as this is reflected in the values obtained using Table 5.6. [Pg.63]

A one-pot reaction between a tryptophan ester, benzotriazole, and 2,5-dimethoxytetrahydrofuran in acetic acid gives the diastereomeric benzotriazolyl tetracycles, 349, in good yield. Substitution of the benzotriazole by reaction with silyl enol ethers and boron trifluoride etherate gives the corresponding ketones 350 and 351, and reaction with allylsilanes gives the corresponding alkenes 352 and 353. If the boron trifluoride etherate is added to the mixture before the silane, elimination of benzotriazole from 349 is also observed (Scheme 83) <1999T3489>. [Pg.926]

Whereas metal-catalyzed decomposition of simple diazoketones in the presence of ketene acetals yields dihydrofurans 121,124,134), cyclopropanes usually result from reaction with enol ethers, enol acetates and silyl enol ethers, just as with unactivated alkenes 13). l-Acyl-2-alkoxycyclopropanes were thus obtained by copper-catalyzed reactions between diazoacetone and enol ethers 79 105,135), enol acetates 79,135 and... [Pg.121]

Electron-rich alkenes like an enol ether react with N-allenylsulfonamides to assist a 1,3-shift of the sulfonyl group, eventually furnishing formal [4+2]-cycloaddition products, tetrahydropyridine derivatives. The sulfonyl group migrates from the nitrogen to the central allenyl carbon atom [25b, 195]... [Pg.809]

Ruthenium complexes B also undergo fast reaction with terminal alkenes, but only slow or no reaction with internal alkenes. Sterically demanding olefins such as, e.g., 3,3-dimethyl-l-butene, or conjugated or cumulated dienes cannot be metathesized with complexes B. These catalysts generally have a higher tendency to form cyclic oligomers from dienes than do molybdenum-based catalysts. With enol ethers and enamines irreversible formation of catalytically inactive complexes occurs [582] (see Section 2.1.9). Isomerization of allyl ethers to enol ethers has been observed with complexes B [582]. [Pg.144]


See other pages where Alkenes from enol ethers is mentioned: [Pg.14]    [Pg.326]    [Pg.326]    [Pg.339]    [Pg.274]    [Pg.269]    [Pg.810]    [Pg.96]    [Pg.269]    [Pg.269]    [Pg.153]    [Pg.269]    [Pg.177]    [Pg.146]    [Pg.88]    [Pg.1238]    [Pg.1526]    [Pg.154]    [Pg.153]    [Pg.361]    [Pg.326]    [Pg.491]    [Pg.190]    [Pg.57]    [Pg.35]   
See also in sourсe #XX -- [ Pg.1329 ]




SEARCH



Alkenes enolates

Alkenes ether

Alkenes from ethers

From alkenes

From enol ethers

From ethers

© 2024 chempedia.info