Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkynes, -cycloaddition with alkenes

Ethyl 4.4,4-trifluorobut-2-ynoate reacts with various dienes (Table 3). " With a iionsymmctric diene, the cycloadduct is obtained as a mixture of regioisomers. This suggests that, unlike reactions with alkenes, reactions with alkynes arc not governed by the ester substituent. Cycloadducts can also undergo a further cycloaddition, in particular when the diene is used in excess. [Pg.527]

Nonetheless, there are a small number of systems that do mediate such [2 -i- 2 -t- 2] cycloadditions. With allenes as the alkene , cycloaddition with both acetylene and terminal alkynes proceeds regio-selectively to give 3,5-dimethylenecyclohexenes using Ni catalysts, and mostly 3,6-dimethylenecyclo-hexenes using Ni° catalyst precursors (equation 19). Norbomadiene undergoes so-called homo-Diels-Alder cycloaddition with both alkenes and a ynes in the presence of nickel catalysts. Further elaboration of this chemistry with alkynes but not alkenes has been described using a Co/Al catalyst system (equation 20). Attempts to produce cyclohexenes via all-intramolecular [2 + 2 + 2] cycloaddition of l,13-dien-7-ynes or 1,1 l-dien-6-ynes have been unsuccessful. ... [Pg.1141]

Nitrile oxides undergo efficient [3-1-2] cycloadditions with alkynes and alkenes to generate isoxazoles and 4,5-dihydroisoxazoles, respectively. With unsymmetrical dipolarophiles there exists the possibility of regioisomeric mixtures of products however, it is generally found that steric effects control the regioselectivity and the more encumbered end of the dipolarophile becomes attached to the oxygen of the nitrile oxide. Thus, terminal alkynes and alkenes afford almost exclusively 3,5-disubstituted isoxazoles and dihydroisoxazoles, respectively (Scheme 91). [Pg.427]

Methylenecyclopropane is also a convenient TMM precursor for the cycloaddition reaction. Both nickel(O) and palladium(O) complexes can catalyze the [3 + 2] cycloaddition of aUcylidenecyclopropanes with aUcenes and alkynes (Scheme 12). ° Unlike the Ni-catalyzed reaction, the regioselectivity in the Pd-catalyzed reaction with alkene is independent of the structure of the starting aUcylidenecyclopropanes, which indicates that this reaction also proceeds via TMM-Pd as mentioned above. The TMM-Pd generated from aUcylidenecyclopropanes can undergo a stereoselective intramolecular cycloaddition with alkynes,and the regiochemistry is different from the Ni-catalyzed reaction... [Pg.361]

Again, it is noteworthy that 4-substituted 5-hydrdxythiazoles (24) react like 5-hydroxy-THISs with alkynes to give pyrroles and sometimes with alkenes to give exo-cycloadducts (Scheme 22). In the latter case other processes compete with the cycloaddition, becoming dominant when 24 is treated with azo-compounds, enamines, or heterocumulenes (31). [Pg.11]

On the whole, the cycloaddition of alkynes to nitrile N-oxides is one of the most important routes to isoxazoles, but in spite of its potentially wide application, its synthetic utility is less than that of the corresponding reaction with alkenes for the following reasons. (1)... [Pg.68]

On the other hand, its cycloadditions with 1,2-disubstituted alkenes under similar conditions produce stereospecifically a mixture of regioisomeric products [35] (equation 34) In contrast, its reaction with theunsymmetrical alkyne 1 -phenyl-propyne leads to a single product [35] (equation 35)... [Pg.809]

Recently, Burger devised an improved method of carrying out mild, regiospecific cyclizations that involve an intermediate that acts as a synthon for a nitrile ylide of HCN [47 (equation 48). With this methodology, cycloadditions with activated alkenes, alkynes, and azo compounds were earned out [47] (equation 49). All such reported reactions were regiospecific and had the same orientational preference... [Pg.813]

Nitrone hydrate is converted into nitrone by boiling in benzene with azeotropic removal of water [48] (equation 50). This in situ formation of nitrone is carried out in the presence of various alkenes and alkynes, which undergo cycloaddition with the nitrone [48, 49] (equations 51 and 52). [Pg.814]

The types of cycloadditions discovered for enamines range through a regular sequence starting with divalent addition to form a cyclopropane ring, followed by 1,2 addition (i) of an alkene or an alkyne to form a cyclo-cyclobutane or a cyclobutene, then 1,3-dipolar addition with the enamine the dipolarophile 4), and finally a Diels-Alder type of reaction (5) with the enamine the dienophile. [Pg.212]

Another interesting [3+2] cycloaddition in aqueous media was recently reported by Murakami.131 2-Cyanophenylboronic acid reacted as a three-carbon component with alkynes or alkenes to afford substituted indenones or indanones (Eq. 4.67). The use of an alkynoate even produced benzotropone, a formal [3 + 2 + 2] adduct. [Pg.136]

Co-catalyzed transformations are concerned mainly with the [2+2+2] cycloadditions of three alkyne groups to give arenes. Another important reaction is the [2+2+1] cycloaddition of alkynes, alkenes and CO to give cyclopentenones, which is the well-known as Pauson-Khand reaction [272]. [Pg.458]

Diterpenoids related to lambertianic acid were prepared by intramolecular cyclization of either an alkene or an alkyne with a furan ring <2005RJ01145>. On heating amine 101 with allyl bromide, the intermediate ammonium ion 102 was formed which then underwent [4+2] cycloadditions in situ to give the spiroazonium bromides 103 and 104 (Scheme 13). These isomers arose from either endo- or co-transition states. The analogous reaction was also carried out with the same amine 101 and propargyl bromide. The products 105 and 106 contain an additional double bond and were isolated in 58% yield. The product ratios of 103 104 and 105 106 were not presented. [Pg.1053]

Interaction of a carbonyl group with an electrophilic metal carbene would be expected to lead to a carbonyl ylide. In fact, such compounds have been isolated in recent years 14) the strategy comprises intramolecular generation of a carbonyl ylide whose substituent pattern guarantees efficient stabilization of the dipolar electronic structure. The highly reactive 1,3-dipolar species are usually characterized by [3 + 2] cycloaddition to alkynes and activated alkenes. Furthermore, cycloaddition to ketones and aldehydes has been reported for l-methoxy-2-benzopyrylium-4-olate 286, which was generated by Cu(acac)2-catalyzed decomposition of o-methoxycarbonyl-m-diazoacetophenone 285 2681... [Pg.190]

Scheme 6.186) [347]. The condensation of O-allylic and O-propargylic salicylalde-hydes with a-amino esters was carried out either in the absence of a solvent or - if both components were solids - in a minimal volume of xylene. All reactions performed under microwave conditions rapidly proceeded to completion within a few minutes and typically provided higher yields compared to the corresponding thermal protocols. In the case of intramolecular alkene cycloadditions, mixtures of hexa-hydrochromeno[4,3-b]pyrrole diastereoisomers were obtained, whereas transformations involving alkyne tethers provided chromeno[4,3-b]pyrroles directly after in situ oxidation with elemental sulfur (Scheme 6.186). Independent work by Pospisil and Potacek involved very similar transformations under strictly solvent-free conditions [348]. [Pg.227]

One obvious synthetic route to isoxazoles and dihydroisoxazoles is by [3+2] cycloadditions of nitrile oxides with alkynes and alkenes, respectively. In the example elaborated by Giacomelli and coworkers shown in Scheme 6.206, nitroalkanes were converted in situ to nitrile oxides with 1.25 equivalents of the reagent 4-(4,6-di-methoxy[l,3,5]triazin-2-yl)-4-methylmorpholinium chloride (DMTMM) and 10 mol% of N,N-dimethylaminopyridine (DMAP) as catalyst [373], In the presence of an alkene or alkyne dipolarophile (5.0 equivalents), the generated nitrile oxide 1,3-dipoles undergo cycloaddition with the double or triple bond, respectively, thereby furnishing 4,5-dihydroisoxazoles or isoxazoles. For these reactions, open-vessel microwave conditions were chosen and full conversion with very high isolated yields of products was achieved within 3 min at 80 °C. The reactions could also be carried out utilizing a resin-bound alkyne [373]. For a related example, see [477]. [Pg.238]

Cyclobutanones (11, 560-561). Ketenimium salts are more reactive than ke-tenes in [2 + 2] cycloadditions with alkenes to prepare cyclobutanones. The salts are readily available by in situ reaction of tertiary amides with triflic anhydride and a base, generally 2,4,6-collidine. The cycloaddition proceeds satisfactorily with alkyl-substituted alkenes and alkynes, but not with enol ethers or enamines.1... [Pg.324]

Af-Acyliminium ions are known to serve as electron-deficient 4n components and undergo [4+2] cycloaddition with alkenes and alkynes.15 The reaction has been utilized as a useftil method for the construction of heterocycles and acyclic amino alcohols. The reaction can be explained in terms of an inverse electron demand Diels-Alder type process that involves an electron-deficient hetero-diene with an electron-rich dienophile. Af-Acyliminium ions generated by the cation pool method were also found to undergo [4+2] cycloaddition reaction to give adduct 7 as shown in Scheme 7.16 The reaction with an aliphatic olefin seems to proceed by a concerted mechanism, whereas the reaction with styrene derivatives seems to proceed by a stepwise mechanism. In the latter case, significant amounts of polymeric products were obtained as byproducts. The formation of polymeric byproducts can be suppressed by micromixing. [Pg.205]


See other pages where Alkynes, -cycloaddition with alkenes is mentioned: [Pg.19]    [Pg.392]    [Pg.122]    [Pg.392]    [Pg.82]    [Pg.102]    [Pg.23]    [Pg.481]    [Pg.69]    [Pg.22]    [Pg.22]    [Pg.194]    [Pg.13]    [Pg.15]    [Pg.67]    [Pg.87]    [Pg.415]    [Pg.20]    [Pg.165]    [Pg.584]    [Pg.169]    [Pg.370]    [Pg.118]    [Pg.1054]    [Pg.59]    [Pg.79]   
See also in sourсe #XX -- [ Pg.1229 ]




SEARCH



Alkenes 2+2]cycloaddition

Alkenes, cycloadditions

Alkynes 2+2]-cycloadditions

Alkynes cycloaddition

Alkynes cycloaddition with

Cycloaddition with

With alkynes

© 2024 chempedia.info