Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkene To ether

Fig. Synthesis of an alcohol from an alkene using mercuric acetate. Alkenes to Ethers... Fig. Synthesis of an alcohol from an alkene using mercuric acetate. Alkenes to Ethers...
A similar reaction to the mercuric acetate/sodium borohydride synthesis of alcohols allows the conversion of alkenes to ethers. In this case, mercuric trifluoracetate is used ... [Pg.117]

When mercuration takes place in an alcohol solvent, the alcohol serves as a nucleophile to attack the mercurinium ion. The resulting product contains an alkoxy (—O—R) group. In effect, alkoxymercuration-demercuration converts alkenes to ethers by adding an alcohol across the double bond of the alkene. [Pg.342]

Simmons-Smith reagent Named after the duPont chemists who discovered that diiodo-mechane would react with an active zinc-copper couple in ether to give a reagent with molecular formula ICHiZnl. The reagent adds stereospecifically cis- to alkenes to give cyclopropanes in high yields. [Pg.361]

Strong acids also catalyze the addition of alcohols to alkenes to give ethers, and the mechanistic studies which have been done indicate that the reaction closely parallels the hydration process. ... [Pg.360]

Secondary and tertiary alcohols react with the Ishikawa reagent to give the corresponding fluorides and, usually, considerable amounts of alkenes or ethers [57] (Table 5]... [Pg.221]

The addition, therefore, follows Markovnikov s rule. Primary alcohols give better results than secondary, and tertiary alcohols are very inactive. This is a convenient method for the preparation of tertiary ethers by the use of a suitable alkene such as Me2C=CH2. Alcohols add intramolecularly to alkenes to generate cyclic ethers, often bearing a hydroxyl unit as well. This addition can be promoted by a palladium catalyst, with migration of the double bond in the final product. Rhenium compounds also facilitate this cyclization reaction to form functionalized tetrahydrofurans. [Pg.996]

Both phase transfer and crown ether catalysis have been used to promote a-elimination reactions of chloroform and other haloalkanes.153 The carbene can be trapped by alkenes to form dichlorocyclopropanes. [Pg.914]

Acids that have weakly nucleophilic anions, e.g. HS04e from dilute aqueous H2S04, are chosen as catalysts, so that their anions will offer little competition to H20 any R0S03H formed will in any case be hydrolysed to ROH under the conditions of the reaction. Rearrangement of the carbocationic intermediate may take place, and electrophilic addition of it to as yet unprotonated alkene is also known (p. 185). The reaction is used on the large scale to convert cracked petroleum alkene fractions to alcohols by vapour phase hydration with steam over heterogeneous acid catalysts. Also under acid catalysis, ROH may be added to alkenes to yield ethers, and RCOzH to yield esters. [Pg.187]

As the name implies, the first step of this domino process consists of a Knoevenagel condensation of an aldehyde or a ketone 2-742 with a 1,3-dicarbonyl compound 2-743 in the presence of catalytic amounts of a weak base such as ethylene diammonium diacetate (EDDA) or piperidinium acetate (Scheme 2.163). In the reaction, a 1,3-oxabutadiene 2-744 is formed as intermediate, which undergoes an inter- or an intramolecular hetero-Diels-Alder reaction either with an enol ether or an alkene to give a dihydropyran 2-745. [Pg.161]

The simplest nitroalkene, nitroethene, undergoes Lewis acid-promoted [4+2] cycloaddition with chiral vinyl ethers to give cyclic nitronates with high diastereoselectivity. The resulting cyclic nitronates react with deficient alkenes to effect a face-selective [3+2] cycloaddition. A remote acetal center controls the stereochemistry of [3+2] cycloaddition. This strategy is applied to synthesis of the pyrrolizidine alkaloids (+)-macronecine and (+)-petasinecine (Scheme 8.33).165... [Pg.281]

Dicyclohexyl ether [Brpnsted acid promoted ketone reduction, symmetrical ether], 123 Diels-Alder cycloaddition-cycloreversion pathway, alkene to alkane reductions, trisubstituted alkenes, 39-40 3,5-Dimethyl-1 -cyclohexen-1 -yl... [Pg.751]

The hydrogenation is usually limited to nonpolar alkenes (terminal and internal cyclic and acyclic alkenes), even though Ti systems have been used to hydrogenate alkenes containing ether and ester functionalities such as vinyl ethers or methyl oleate [42, 45, 59, 62]. [Pg.115]

Cyclobutanones (11, 560-561). Ketenimium salts are more reactive than ke-tenes in [2 + 2] cycloadditions with alkenes to prepare cyclobutanones. The salts are readily available by in situ reaction of tertiary amides with triflic anhydride and a base, generally 2,4,6-collidine. The cycloaddition proceeds satisfactorily with alkyl-substituted alkenes and alkynes, but not with enol ethers or enamines.1... [Pg.324]

Oxidation is the first step for producing molecules with a very wide range of functional groups because oxygenated compounds are precursors to many other products. For example, alcohols may be converted to ethers, esters, alkenes, and, via nucleophilic substitution, to halogenated or amine products. Ketones and aldehydes may be used in condensation reactions to form new C-C double bonds, epoxides may be ring opened to form diols and polymers, and, finally, carboxylic acids are routinely converted to esters, amides, acid chlorides and acid anhydrides. Oxidation reactions are some of the largest scale industrial processes in synthetic chemistry, and the production of alcohols, ketones, aldehydes, epoxides and carboxylic acids is performed on a mammoth scale. For example, world production of ethylene oxide is estimated at 58 million tonnes, 2 million tonnes of adipic acid are made, mainly as a precursor in the synthesis of nylons, and 8 million tonnes of terephthalic acid are produced each year, mainly for the production of polyethylene terephthalate) [1]. [Pg.181]

Hydroboration of alkenes in non-ethereal solvent has been reported using diborane generated in situ from a quaternary ammonium borohydride and bromoethane (see Section 11.5). Almost quantitative yields of the alcohols are reported [e.g. 1 ]. As an alternative to the haloalkane, trimethylsilyl chloride has also been used in conjunction with the ammonium borohydride [2]. Reduction of the alkene to the alkane also occurs as a side reaction (<20%) and diphenylethyne is converted into 1,2-diphenylethanol (70%), via the intermediate /ra 5-stilbene. [Pg.116]

Alcohols undergo dehydration in the presence of protic acids (H2SO4, H3PO4). The formation of the reaction product, alkene or ether depends on the reaction conditions. For example, ethanol is dehydrated to ethene in the presence of sulphuric acid at 443 K. At 413 K, ethoxyethane is the main product. [Pg.68]

Another important variant of the preceding approach is the cycloaddition reaction between monocarbonyl iodonium salt 47 and an alkene to give dihydrofuran 48 (88TL3703 89JOC2605). The iodonium salt 47 is generated by the oxidation of acetophenone silyl enol ether (46) with iodosobenzene in the presence of fluoboric acid. [Pg.18]


See other pages where Alkene To ether is mentioned: [Pg.328]    [Pg.59]    [Pg.305]    [Pg.281]    [Pg.317]    [Pg.129]    [Pg.190]    [Pg.923]    [Pg.1012]    [Pg.1044]    [Pg.1056]    [Pg.1526]    [Pg.96]    [Pg.285]    [Pg.750]    [Pg.752]    [Pg.756]    [Pg.208]    [Pg.149]    [Pg.269]    [Pg.407]    [Pg.227]    [Pg.473]    [Pg.105]    [Pg.739]    [Pg.115]   
See also in sourсe #XX -- [ Pg.2 , Pg.17 ]




SEARCH



Alkenes ether

To ether

© 2024 chempedia.info