Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkene acrylate

These planar U and W forms are more stable than other conformations of these two anions. The geometry of the anions strongly depends on the medium. These findings enable us to better understand initiation and propagation processes. In diene, 1 and substituted alkene (acrylate, 2 2-vi-... [Pg.185]

Heteroaromatics such as furan, thiophene, and even the 2-pyridone 280 react with acrylate to form 281(244-246]. Benzene and heteroaromatic rings are introduced into naphthoquinone (282) as an alkene component[247]. The pyrrole ring is more reactive than the benzene ring in indole. [Pg.58]

The cross-coupling of two alkenes also takes place. Alkenes such as acrylate react regioselectively with 1,3-dimethyluracil (290) to afford 5-(l-alkenyl)ura-cils such as 291 in a high yield[260]. [Pg.60]

Organoboranes undergo transmetallation. 1-Hexenylboronic acid (438) reacts with methyl acrylate via the transmetallation with Pd(OAc)2, giving methyl 2,4-nonadienoate (439)[399], The ( )-alkenylboranes 440, prepared by the hydroboration of terminal alkynes, are converted into the alkylated ( )-alkenes 441 by treatment with an equivalent amount of Pd(OAc)2 and triethylamine[400]. The ( )-octenylborane 442 reacts with CO in MeOH in the... [Pg.84]

Chlorobenzene reacts with alkenes with bimetallic catalyses of Ni and Pd. Chlorobenzene is converted in situ into iodobenzene (14) by the Ni-cataiyzed reaction of Nal at 140 "C. NiBr2, rather than the Ni(0) complex, is found to be a good catalyst. Then the Pd-catalyzed reaction of the iodobenzene with acrylate takes place) 15]. [Pg.129]

Benzyl chloride reacts with alkenes bearing an EWG[8], The reaction with acrylate proceeds smoothly to give 7-phenylcrotonate (76) in the presence of BujN without a ligand. No reaction takes place with Pd(Ph,P)4[77]. [Pg.139]

The diazonium salts 145 are another source of arylpalladium com-plexes[114]. They are the most reactive source of arylpalladium species and the reaction can be carried out at room temperature. In addition, they can be used for alkene insertion in the absence of a phosphine ligand using Pd2(dba)3 as a catalyst. This reaction consists of the indirect substitution reaction of an aromatic nitro group with an alkene. The use of diazonium salts is more convenient and synthetically useful than the use of aryl halides, because many aryl halides are prepared from diazonium salts. Diazotization of the aniline derivative 146 in aqueous solution and subsequent insertion of acrylate catalyzed by Pd(OAc)2 by the addition of MeOH are carried out as a one-pot reaction, affording the cinnamate 147 in good yield[115]. The A-nitroso-jV-arylacetamide 148 is prepared from acetanilides and used as another precursor of arylpalladium intermediate. It is more reactive than aryl iodides and bromides and reacts with alkenes at 40 °C without addition of a phosphine ligandfl 16]. [Pg.148]

A cr-aryl-Pd bond is formed by the transfer of an aryl group even from arylphosphines to Pd and alkene insertion takes placefl 17-119], This reaction is slow and it is not a serious problem when triarylphosphine is used as a ligand. The cinnamate 149 is obtained by the reaction of PhsP with acrylate in the presence of Pd(OAc)2 in AcOH. [Pg.149]

Allylic carbonates are most reactive. Their carbonylation proceeds under mild conditions, namely at 50 C under 1-20 atm of CO. Facile exchange of CO2 with CO takes place[239]. The carbonylation of 2,7-octadienyl methyl carbonate (379) in MeOH affords the 3,8-nonadienoate 380 as expected, but carbonylation in AcOH produces the cyclized acid 381 and the bicyclic ketones 382 and 383 by the insertion of the internal alkene into Tr-allylpalladium before CO insertion[240] (see Section 2.11). The alkylidenesuccinate 385 is prepared in good yields by the carbonylation of the allylic carbonate 384 obtained by DABCO-mediated addition of aldehydes to acrylate. The E Z ratios are different depending on the substrates[241]. [Pg.341]

Heck type vinylation of 4-bromo-l-(4-methylphenylsulfonyl)-indole proceeds in good yield with such alkenes as methyl acrylate, styrene and N-vinylphthalimide using Pd(OAc)2 (5 mol%) and tri-o-tolylphosphine as the... [Pg.141]

The Michael-type addition of maleic hydrazide and other pyridazinones to activated alkenes, such as methyl acrylate, acrylonitrile, methyl vinyl ketone and other a,/3-unsatu-rated carbonyl compounds, results in the formation of mono-lV-substituted products. [Pg.15]

With a change to non-polar solvent, the reaction of ylides 269 with alkynes and alkenes changed dramatically, as shown in Scheme 10. With DM AD in toluene the ylides give pyrazolopyridines 272 in good yield (91TL4977), and with methyl propiolate (MEP) give indolizines 273 (92H(33)203). The reaction with acrylates is much less clean, but the variety of products is said to be formed from a diazene intermediate, which splits to give a diradical (93H(35)851). [Pg.50]

The TiX2-TADD0Late-catalyzed 1,3-dipolar q cloaddition reactions were extended to include an acrylate derivative [66]. In the absence of a catalyst, the reaction between nitrones 1 and acryloyl oxazolidinone 19b proceeded to give a mixture all eight regio-and stereoisomers (Scheme 6.23). However, application of in this case only 10 mol% of Ti(OTs)2-TADDOLate 23d as catalyst for the reaction of various nitrones 1 with alkene 19b, led to complete regioselectivity and high endo selectivity in the reaction and the endo products 21 were obtained with 48-70% ee (Scheme 6.23) [66]. [Pg.229]

No single examples have been reported so far for the catalyzed asymmetric diazoalkane cydoadditions. Based on the kinetic data on the relative reaction rates observed by Huisgen in the competitive diazomethane cydoadditions between 1-alkene and acrylic ester (Scheme 7.32), it is found that diazomethane is most nu-deophilic of all the 1,3-dipoles examined (kaciyiate/fci-aikene = 250000) [78]. Accordingly, the cydoadditions of diazoalkanes to electron-defident alkenes must be most efficient when catalyzed by a Lewis acid catalyst. The author s group has become aware of this possibility and started to study the catalyzed enantioselective diazoalkane cydoadditions of 3-(2-alkenoyl)-2-oxazolidinones. [Pg.278]

Dipole Acrylic ester 1-Alkene Vinyl ether Enamine... [Pg.279]

An alkene activated by an electron-withdrawing group—often an acrylic ester 2 is used—can react with an aldehyde or ketone 1 in the presence of catalytic amounts of a tertiary amine, to yield an a-hydroxyalkylated product. This reaction, known as the Baylis-Hillman reaction, leads to the formation of useful multifunctional products, e.g. o -methylene-/3-hydroxy carbonyl compounds 3 with a chiral carbon center and various options for consecutive reactions. [Pg.28]

AA sec acrylic acid abstraction sec hydrogen atom transfer abstraction v,v addition and micleophilicity 35 by aikoxy radicals 34-5, 124-5, 392 by alkoxycarbonyloxy radicals 103,127-8 by alkyl radicals 34 5, 113, 116 by f-amyloxy radicals 124 by arenethiyl radicals 132 by aryl radicals 35, 118 by benzovloxy radicals 35, 53, 120, 126 wilh MM a" 53, 120 by /-butovy radicals 35, 53, 55, 124 solvent effects 54, 55. 123 with alkenes 122 3 with ally I acrylates 122 wilh AMS 120, 123 wilh BMA 53, 123 with isopropenvl acetate 121 with MA 120 with MAN 121 with MMA 53, 55, 120.419 with VAc 121 with vinyl ethers 123... [Pg.591]

Kochi (1956a, 1956b) and Dickerman et al. (1958, 1959) studied the kinetics of the Meerwein reaction of arenediazonium salts with acrylonitrile, styrene, and other alkenes, based on initial studies on the Sandmeyer reaction. The reactions were found to be first-order in diazonium ion and in cuprous ion. The relative rates of the addition to four alkenes (acrylonitrile, styrene, methyl acrylate, and methyl methacrylate) vary by a factor of only 1.55 (Dickerman et al., 1959). This result indicates that the aryl radical has a low selectivity. The kinetic data are consistent with the mechanism of Schemes 10-52 to 10-56, 10-58 and 10-59. This mechanism was strongly corroborated by Galli s work on the Sandmeyer reaction more than twenty years later (1981-89). [Pg.250]

A first evaluation of complex 71a by Blechert et al. revealed that its catalytic activity differs significantly from that of the monophosphine complex 56d [49b]. In particular, 71a appears to have a much stronger tendency to promote cross metathesis rather than RCM. Follow-up studies by the same group demonstrate that 71a allows the cross metathesis of electron-deficient alkenes with excellent yields and chemoselectivities [50]. For instance, alkene 72 undergoes selective cross metathesis with 3,3,3-trifluoropropene to give 73 in excellent yield and selectivity. Precatalyst 56d, under identical conditions, furnishes a mixture of 73 and the homodimer of 72 (Scheme 17) [50a]. While 56d was found to be active in the cross metathesis involving acrylates, it failed with acrylonitrile [51]. With 71a, this problem can be overcome, as illustrated for the conversion of 72—>74 (Scheme 17) [50b]. [Pg.246]

The cross metathesis of acrylic amides [71] and the self metathesis of two-electron-deficient alkenes [72] is possible using the precatalyst 56d. The performance of the three second-generation catalysts 56c,d (Table 3) and 71a (Scheme 16) in a domino RCM/CM of enynes and acrylates was recently compared by Grimaud et al. [73]. Enyne metathesis of 81 in the presence of methyl acrylate gives the desired product 82 only with phosphine-free 71a as a pre-... [Pg.250]

Chemoselective alkenylation in the C-3 position of N-substituted 3,5-dichloropyrazin-2(lH)-ones has been described by Van der Eycken et al. [27]. When a mixture of N-substituted 3,5-dichloropyrazin-2(lH)-one, ethyl acrylate, and NEts in DME, using Pd(OAc)2/DTPB [2-(di-f-butylphosphanyl)bi-phenyl] as a precatalyst, was irradiated for 15 min at 150 °C, the desired /1-fimctionabzed ethyl acrylates could be obtained in moderate yields (Scheme 81). When styrene was used as an alkene, a mixture of E and Z products was isolated. The type of catalyst used proved to be important to avoid competitive Diels-Alder reaction of ethyl acrylate with the hetero-diene system of 3,5-dichloro-l-benzylpyrazin-2(lH)-one. [Pg.197]

An interesting parallel was found while the microwave-enhanced Heck reaction was explored on the C-3 position of the pyrazinone system [29]. The additional problem here was caused by the capability of the alkene to undergo Diels-Alder reaction with the 2-azadiene system of the pyrazinone. An interesting competition between the Heck reaction and the Diels-Alder reaction has been noticed, while the outcome solely depended on the substrates and the catalyst system. Microwave irradiation of a mixture of pyrazinone (Re = H), ethyl acrylate (Y = COOEt) and Pd(dppf)Cl2 resulted in the formation of a mixture of the starting material together with the cycloaddition product in a 3 1 ratio (Scheme 15). On the contrary, when Pd(OAc)2 was used in combination with the bulky phosphine ligand 2-(di-t-butylphosphino)biphenyl [41-44], the Heck reaction product was obtained as the sole product. When a mixture of the pyrazinone (Re = Ar) with ethyl acrylate or styrene and Pd(dppf)Cl2 was irradiated at 150 °C for 15 min, both catalytic systems favored the Heck reaction product with no trace of Diels-Alder adduct. [Pg.278]


See other pages where Alkene acrylate is mentioned: [Pg.328]    [Pg.328]    [Pg.28]    [Pg.622]    [Pg.75]    [Pg.328]    [Pg.328]    [Pg.28]    [Pg.622]    [Pg.75]    [Pg.33]    [Pg.46]    [Pg.59]    [Pg.89]    [Pg.137]    [Pg.147]    [Pg.521]    [Pg.524]    [Pg.453]    [Pg.41]    [Pg.55]    [Pg.180]    [Pg.30]    [Pg.69]    [Pg.121]    [Pg.123]    [Pg.598]    [Pg.154]    [Pg.181]    [Pg.289]    [Pg.300]   
See also in sourсe #XX -- [ Pg.868 ]




SEARCH



Acrylates reaction with alkenes

© 2024 chempedia.info