Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkali, reactions alkaline battery

Nickel(lll) oxide, prepared from a nickel(ii) salt and sodium hypochlorite, is used for the oxidation of alkanols in aqueous alkali [46]. Residual nickel(Ii) oxide can be re-activated by reaction with sodium hypochlorite. Nickel oxides have also long been used in the manufacture of the positive pole in the Edison nickel-iron rechargeable battery, now largely superseded by die lead-acid accumulator, and in the Jungner nickel-cadmium batteries used as button cells for calculators [47]. Here, prepared nickel oxide is pressed into a holding plate of perforated nickel. Such prepared plates of nickel(lli) oxide have been proposed as reagent for the oxidation, in alkaline solution, of secondary alcohols to ketones and primary alcohols to carboxylic acids [48]. Used plates can be regenerated by anodic oxidation. [Pg.269]

Carbon and graphite are often used as supports for electrocatalysts, but they also have an electrocatalytic function in electrode reactions such as oxygen reduction in alkaline electrolytes, chlorine alkali industry, and SOCI2 reduction in lithium-thionyl chloride batteries. [Pg.485]

The manufacturing process can be done using modified paper-making machines, at quite low cost. Such electrodes are not just used in fuel cells but are also used in metal/air batteries, for which the cathode reaction is much the same as for an alkali fuel cell. For example, the same electrode can be used as the cathode in a zinc air battery (e.g. for hearing aids), an aluminium/air battery (e.g. for telecommunications reserve power), and an alkaline electrolyte fuel cell. The carbon-supported catalyst is of the same structure as that shown in Figure 4.6 in the previous chapter. However, the catalyst will not always be platinum. For example, manganese can be used for the cathode in metal air batteries and fuel cells. [Pg.135]

Practical primary or secondary alkali-metal or alkaline-earth batteries can be made only if the dissolution of the anode by reactions (16.1) and (16.2) (and by other corrosion reactions) can be stopped. Since attacks both the electrolyte and the cathode, the electrolyte must be designed to contain at least one material that reacts rapidly with lithium (or with the alkali-metal anode) to form an insoluble SEI. On inert electrodes, the SEI is formed by reduction of the electrolyte. This type of electrode (completely covered by SEI), was named [1, 2] the SEI electrode. ... [Pg.481]


See other pages where Alkali, reactions alkaline battery is mentioned: [Pg.224]    [Pg.441]    [Pg.441]    [Pg.421]    [Pg.202]    [Pg.158]    [Pg.510]    [Pg.421]   


SEARCH



Alkali Alkaline

Alkali battery

Alkali, alkalinity

Alkali, reactions

Alkali, reactions alkaline

Alkaline battery

Batteries alkaline battery

Battery reactions

© 2024 chempedia.info