Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aldehydes stereocontrol

Uenishi, J., Masuda, S., Wakabayashi, S. Intramolecular Sm and Sm promoted reaction of y-oxy-5-keto aldehyde stereocontrolled formation of pinacol and lactone. Tetrahedron Lett. 1991, 32, 5097-5100. [Pg.694]

A salient structural feature of intermediate 18 (Scheme 2b), the retrosynthetic precursor of aldehyde 13, is its y,r5-unsaturated ester moiety. As it turns out, the Johnson ortho ester variant of the Clai-sen rearrangement is an excellent method for the synthesis of y,<5-unsaturated esters.11 In fact, the Claisen rearrangement, its many variants included, is particularly valuable in organic synthesis as a method for the stereocontrolled construction of trans di- and tri-substituted carbon-carbon double bonds.12,13 Thus, it is conceivable that intermediate 18 could be fashioned in one step from allylic alcohol 20 through a Johnson ortho ester Claisen rearrangement. In... [Pg.87]

With 2-butenyl- and 3-phenyl-2-propenylstannanes coupling of this Cram selectivity with the intrinsic stereoselectivity of the Lewis acid induced allylstannane-aldehyde reaction gives useful stereocontrol at three contiguous stereogenic centers66,81. [Pg.375]

The E. coli enzyme accepts substitution on either cosubstrate propanal, acetone or 1-fluoro-2-propanone can replace the donor and a variety of aldehydes can replace the acceptor moiety 3. Shortcomings are the relatively low conversion rates obtained for any substrate analog and the as yet unidentified level of relative stereocontrol induced upon substitution at the nucleophilic carbon. [Pg.594]

The use of enantiomerically pure (R)-5-menthyloxy-2(5.//)-furanone results in lactone enolates, after the initial Michael addition, which can be quenched diastereoselectively trans with respect to the /J-substituent. With aldehydes as electrophiles adducts with four new stereogenic centers arc formed with full stereocontrol and the products are enantiomerically pure. Various optically active lactones, and after hydrolysis, amino acids and hydroxy acids can be synthesized in this way317. [Pg.994]

Double asymmetric induction operates when the azomethine compound is derived from a chiral a-amino aldehyde and a chiral amine, e.g., the sulfin-imine 144 [70]. In this case, the R configuration at the sulfur of the chiral auxihary, N-tert-butanesulfinamide, matched with the S configuration of the starting a-amino aldehyde, allowing complete stereocontrol to be achieved in the preparation of the diamine derivatives 145 by the addition of trifluo-romethyl anion, which was formed from trifluoromethyltrimethylsilane in the presence of tetramethylammonium fluoride (Scheme 23). The substituents at both nitrogen atoms were easily removed by routine procedures see, for example, the preparation of the free diamine 146. On the other hand, a lower diastereoselectivity (dr 80 20) was observed in one reaction carried out on the imine derived from (it)-aldehyde and (it)-sulfinamide. [Pg.28]

The overall transformation of this sequence corresponds to the aldol addition of an aldehyde with a cyclic ketone. The actual aldol addition frequently proceeds with low stereocontrol, so this sequence constitutes a method for stereoselective synthesis of the aldol adducts. The reaction has been done with several Lewis acids, including SnCl4, BF3, and Ti(0-/-Pr)3Cl. [Pg.886]

The synthesis in Scheme 13.21 starts with a lactone that is available in enantiomer-ically pure form. It was first subjected to an enolate alkylation that was stereocontrolled by the convex shape of the cis ring junction (Step A). A stereospecific Pd-mediated allylic substitution followed by LiAlH4 reduction generated the first key intermediate (Step B). This compound was oxidized with NaI04, converted to the methyl ester, and subjected to a base-catalyzed conjugation. After oxidation of the primary alcohol to an aldehyde, a Wittig-Horner olefination completed the side chain. [Pg.1185]

Recently, a new multicomponent condensation strategy for the stereocontrolled synthesis of polysubstituted tetrahydropyran derivatives was re-published by the Marko group, employing an ene reaction combined with an intramolecular Sakurai cyclization (IMSC) (Scheme 1.14) [14]. The initial step is an Et2AlCl-promoted ene reaction between allylsilane 1-50 and an aldehyde to afford the (Z)-homoallylic alcohol 1-51, with good control of the geometry of the double bond. Subsequent Lewis acid-media ted condensation of 1-51 with another equivalent of an aldehyde provided the polysubstituted exo-methylene tetrahydropyran 1-53 stereoselectively and... [Pg.19]

Dipolar addition to nitroalkenes provides a useful strategy for synthesis of various heterocycles. The [3+2] reaction of azomethine ylides and alkenes is one of the most useful methods for the preparation of pyrolines. Stereocontrolled synthesis of highly substituted proline esters via [3+2] cycloaddition between IV-methylated azomethine ylides and nitroalkenes has been reported.147 The stereochemistry of 1,3-dipolar cycloaddition of azomethine ylides derived from aromatic aldehydes and L-proline alkyl esters with various nitroalkenes has been reported. Cyclic and acyclic nitroalkenes add to the anti form of the ylide in a highly regioselective manner to give pyrrolizidine derivatives.148... [Pg.274]

The reactions of allylmetal reagents with carbonyl compounds and imines have been extensively investigated during the last two decades [1], These carbon—carbon bondforming reactions possess an important potential for controlling the stereochemistry in acyclic systems. Allylmetal reagents react with aldehydes and ketones to afford homo-allylic alcohols (Scheme 13.1), which are valuable synthetic intermediates. In particular, the reaction offers a complementary approach to the stereocontrolled aldol process, since the newly formed alkenes may be readily transformed into aldehydes and the operation repeated. [Pg.451]

Silyltitanation of 1,3-dienes with Cp2Ti(SiMe2Ph) selectively affords 4-silylated r 3-allyl-titanocenes, which can further react with carbonyl compounds, C02, or a proton source [26]. Hydrotitanation of acyclic and cyclic 1,3-dienes functionalized at C-2 with a silyloxy group has been achieved [27]. The complexes formed undergo highly stereoselective addition with aldehydes to produce, after basic work-up, anti diastereomeric (3-hydroxy enol silanes. These compounds have proved to be versatile building blocks for stereocontrolled polypropionate synthesis. Thus, the combination of allyltitanation and Mukayiama aldol or tandem aldol-Tishchenko reactions provides a short access to five- or six-carbon polypropionate stereosequences (Scheme 13.15) [28],... [Pg.457]

Indolizidine alkaloids. The key step in a new stereocontrolled synthesis of these alkaloids, such as castanospermine (5), depends upon the diastereoselective reaction of an azagluco aldehyde with allylmetal reagents catalyzed by Lewis acids (12, 21-22). Thus reaction of allyltrimethylsilane with the aldehyde 1 and TiCL, (excess) in CH2C12 at - 85° results in the product 2, formed by selective chelation of the ot-amino aldehydo group with TiCl4. The product can be converted into 5... [Pg.18]

Diastereoselective aldol condensations.1 The aldol condensation of a chiral ethyl ketone such as 2 with aldehydes catalyzed by Bu2BOTf gives a mixture of all four possible diastereomeric adducts with little or no stereocontrol. In contrast, reactions catalyzed by either (+)- or (- )-l are highly diastereoselective. By proper choice of (+)- and (- )-l and of (+)- and (- )-2, each one of the four possible 1,2-yyn-diastereomers can be obtained in high purity. [Pg.139]

Since the starting materials are available by reaction of aldehydes with lithiated vinyl ethers, this sequence is useful for conversion of aldehydes into these triols. Indeed this sequence can be used to convert an optically active glyceraldehyde into optically pure pentitols with high syn-stereocontrol. [Pg.302]


See other pages where Aldehydes stereocontrol is mentioned: [Pg.202]    [Pg.108]    [Pg.108]    [Pg.202]    [Pg.108]    [Pg.108]    [Pg.66]    [Pg.63]    [Pg.274]    [Pg.69]    [Pg.194]    [Pg.197]    [Pg.326]    [Pg.425]    [Pg.499]    [Pg.603]    [Pg.636]    [Pg.702]    [Pg.331]    [Pg.276]    [Pg.287]    [Pg.297]    [Pg.302]    [Pg.169]    [Pg.230]    [Pg.63]    [Pg.46]    [Pg.78]    [Pg.82]    [Pg.112]    [Pg.369]    [Pg.519]    [Pg.522]    [Pg.99]    [Pg.72]    [Pg.30]    [Pg.34]    [Pg.133]    [Pg.26]   
See also in sourсe #XX -- [ Pg.203 , Pg.204 , Pg.205 , Pg.206 , Pg.207 ]

See also in sourсe #XX -- [ Pg.203 , Pg.204 , Pg.205 , Pg.206 , Pg.207 ]




SEARCH



Stereocontrol

Stereocontrolled

© 2024 chempedia.info