Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metal complexes reaction with aldehydes

C-C bonds can be formed by reaction with alkyl iodides or more usefully by reaction with metal carbonyls to give aldehydes and ketones e.g. Ni(CO)4 reacts with LiR to form an unstable acyl nickel carbonyl complex which can be attacked by electrophiles such as H+ or R Br to give aldehydes or ketones by solvent-induced reductive elimination ... [Pg.105]

Reactions of reagents 1 and 2 with metal-complexed aromatic, propargylic and dienylic aldehydes provides homoallylic alcohol products with improved selectivity compared to their uncomplexed counterparts. The reaction of benzaldehyde chromium tricarbonyl complex 14 with (R,R)-1 followed by oxidative decomplexation provided ( -15 in 90% yield and 83% ee. The (JE)-crotylboration of 14 with (R,R)-2 provided 16 in 90% yield and 92% ee. Reaction of aldehyde 14 with (. -crotylboronate 3, however, provided adduct 17 in only 41% ee. [Pg.618]

The following reaction of an alkyne with an Ir complex looks like the C-C triple bond cleavage (Eq. 27) [41]. It is not the direct C-C triple bond cleavage by the reaction with metals. The first step of this reaction is addition of water to the triple bond forming an aldehyde. Elimination of CO from the resulting acyl complex gives the product. [Pg.234]

Pd-cataly2ed reactions of butadiene are different from those catalyzed by other transition metal complexes. Unlike Ni(0) catalysts, neither the well known cyclodimerization nor cyclotrimerization to form COD or CDT[1,2] takes place with Pd(0) catalysts. Pd(0) complexes catalyze two important reactions of conjugated dienes[3,4]. The first type is linear dimerization. The most characteristic and useful reaction of butadiene catalyzed by Pd(0) is dimerization with incorporation of nucleophiles. The bis-rr-allylpalladium complex 3 is believed to be an intermediate of 1,3,7-octatriene (7j and telomers 5 and 6[5,6]. The complex 3 is the resonance form of 2,5-divinylpalladacyclopentane (1) and pallada-3,7-cyclononadiene (2) formed by the oxidative cyclization of butadiene. The second reaction characteristic of Pd is the co-cyclization of butadiene with C = 0 bonds of aldehydes[7-9] and CO jlO] and C = N bonds of Schiff bases[ll] and isocyanate[12] to form the six-membered heterocyclic compounds 9 with two vinyl groups. The cyclization is explained by the insertion of these unsaturated bonds into the complex 1 to generate 8 and its reductive elimination to give 9. [Pg.423]

Oxo Synthesis. Ad of the synthesis gas reactions discussed to this point are heterogeneous catalytic reactions. The oxo process (qv) is an example of an industriady important class of reactions cataly2ed by homogeneous metal complexes. In the oxo reaction, carbon monoxide and hydrogen add to an olefin to produce an aldehyde with one more carbon atom than the original olefin, eg, for propjiene ... [Pg.166]

Acylation. Aliphatic amine oxides react with acylating agents such as acetic anhydride and acetyl chloride to form either A[,A/-diaLkylamides and aldehyde (34), the Polonovski reaction, or an ester, depending upon the polarity of the solvent used (35,36). Along with a polar mechanism (37), a metal-complex-induced mechanism involving a free-radical intermediate has been proposed. [Pg.191]

Different chiral transition- and lanthanide-metal complexes can catalyze the cycloaddition reaction of unactivated and activated aldehydes with especially activated... [Pg.160]

Different main-group-, transition- and lanthanide-metal complexes can catalyze the cycloaddition reaction of activated aldehydes with activated and non-activated dienes. The chiral metal complexes which can catalyze these reactions include complexes which enable substrates to coordinate in a mono- or bidentate fashion. [Pg.164]

It has been observed, however, that the enantioselectivity of reactions of tartrate ester modified allylboronates with metal carbonyl complexes of unsaturated aldehydes are significantly improved compared with the results with the metal-free, uncomplexed aldehydes72. Two such examples involve the (benzaldehyde)tricarbonylchromium complex and the hexacarbonyl(2-... [Pg.292]

These reagents are not isolated but are used directly in reactions with aldehydes, after generation of ate complexes via the addition of an alkyllithium reagent or pyridine11. 2-(2-Propenyl)-1,3,2-dioxaborolane is also metalated upon treatment with lithium tetramethylpiperidide, but mixtures of a- and y-substitution products are obtained upon treatment of this anion with alkylating agents20. Consequently, this route to a-substituted allylboron compounds appears to be rather limited in scope. [Pg.319]

Abstract The photoinduced reactions of metal carbene complexes, particularly Group 6 Fischer carbenes, are comprehensively presented in this chapter with a complete listing of published examples. A majority of these processes involve CO insertion to produce species that have ketene-like reactivity. Cyclo addition reactions presented include reaction with imines to form /1-lactams, with alkenes to form cyclobutanones, with aldehydes to form /1-lactones, and with azoarenes to form diazetidinones. Photoinduced benzannulation processes are included. Reactions involving nucleophilic attack to form esters, amino acids, peptides, allenes, acylated arenes, and aza-Cope rearrangement products are detailed. A number of photoinduced reactions of carbenes do not involve CO insertion. These include reactions with sulfur ylides and sulfilimines, cyclopropanation, 1,3-dipolar cycloadditions, and acyl migrations. [Pg.157]

We see from these examples that many of the carbon nucleophiles we encountered in Chapter 10 are also nucleophiles toward aldehydes and ketones (cf. Reactions 10-104-10-108 and 10-110). As we saw in Chapter 10, the initial products in many of these cases can be converted by relatively simple procedures (hydrolysis, reduction, decarboxylation, etc.) to various other products. In the reaction with terminal acetylenes, sodium acetylides are the most common reagents (when they are used, the reaction is often called the Nef reaction), but lithium, magnesium, and other metallic acetylides have also been used. A particularly convenient reagent is lithium acetylide-ethylenediamine complex, a stable, free-flowing powder that is commercially available. Alternatively, the substrate may be treated with the alkyne itself in the presence of a base, so that the acetylide is generated in situ. This procedure is called the Favorskii reaction, not to be confused with the Favorskii rearrangement (18-7). ... [Pg.1225]

Another SBU with open metal sites is the tri-p-oxo carboxylate cluster (see Section 4.2.2 and Figure 4.2). The tri-p-oxo Fe " clusters in MIL-100 are able to catalyze Friedel-Crafts benzylation reactions [44]. The tri-p-oxo Cr " clusters of MIL-101 are active for the cyanosilylation of benzaldehyde. This reaction is a popular test reaction in the MOF Hterature as a probe for catalytic activity an example has already been given above for [Cu3(BTC)2] [15]. In fact, the very first demonstration of the catalytic potential of MOFs had aheady been given in 1994 for a two-dimensional Cd bipyridine lattice that catalyzes the cyanosilylation of aldehydes [56]. A continuation of this work in 2004 for reactions with imines showed that the hydrophobic surroundings of the framework enhance the reaction in comparison with homogeneous Cd(pyridine) complexes [57]. The activity of MIL-lOl(Cr) is much higher than that of the Cd lattices, but in subsequent reaction rans the activity decreases [58]. A MOF with two different types of open Mn sites with pores of 7 and 10 A catalyzes the cyanosilylation of aromatic aldehydes and ketones with a remarkable reactant shape selectivity. This MOF also catalyzes the more demanding Mukaiyama-aldol reaction [59]. [Pg.81]

The Schiff bases being derivatives of aldehydes or ketones and various amines have received considerable attention because of their interesting physical and chemical properties, involvement in biologically important reactions and widespread application of their metal complexes. Increasing interest in optically active Schiff bases is connected with the discovery at the beginning of the 1990s of the so-called Jacobsen catalysts used in several asymmetric reactions showing excellent enantioselectivity. [Pg.126]


See other pages where Metal complexes reaction with aldehydes is mentioned: [Pg.1097]    [Pg.468]    [Pg.135]    [Pg.468]    [Pg.657]    [Pg.6613]    [Pg.192]    [Pg.2435]    [Pg.28]    [Pg.196]    [Pg.134]    [Pg.687]    [Pg.60]    [Pg.304]    [Pg.446]    [Pg.853]    [Pg.109]    [Pg.169]    [Pg.114]    [Pg.13]    [Pg.232]    [Pg.195]    [Pg.159]    [Pg.327]    [Pg.650]    [Pg.76]    [Pg.34]    [Pg.39]    [Pg.103]    [Pg.915]    [Pg.1175]    [Pg.104]    [Pg.222]    [Pg.31]    [Pg.104]   
See also in sourсe #XX -- [ Pg.326 , Pg.327 , Pg.328 , Pg.329 ]




SEARCH



Aldehydes reaction with metallates

Metal aldehyde

Metal complexes reactions

With metal complexes, reactions

© 2024 chempedia.info