Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aldehydes esterification

Esterification of carboxylic acids involves nucleophilic addition to the carbonyl group as a key step In this respect the carbonyl group of a carboxylic acid resembles that of an aldehyde or a ketone Do carboxylic acids resemble aldehydes and ketones m other ways Do they for example form enols and can they be halogenated at their a carbon atom via an enol m the way that aldehydes and ketones can ... [Pg.815]

Reactions and Uses. The common reactions that a-hydroxy acids undergo such as self- or bimolecular esterification to oligomers or cycHc esters, hydrogenation, oxidation, etc, have been discussed in connection with lactic and hydroxyacetic acid. A reaction that is of value for the synthesis of higher aldehydes is decarbonylation under boiling sulfuric acid with loss of water. Since one carbon atom is lost in the process, the series of reactions may be used for stepwise degradation of a carbon chain. [Pg.517]

Hydroxyalkyl peroxyesters also have been isolated from the autoxidation products of aldehydes and by esterification of hydroxyhydroperoxides (44). [Pg.114]

Oxidation. Oxidation of the -amyl alcohols produces aldehydes, which after continued oxidation can yield acids. This route to aldehydes has httle merit. However, oxidative esterifications with alkah metal hypohaUtes (eg, calcium chlorite, Ca(OCl)2) (49), bromates (eg, sodium bromate, NaBrO )... [Pg.373]

Because vanillin is a phenol aldehyde, it is stable to autooxidation and does not undergo the Cannizzarro reaction. Numerous derivatives can be prepared by etherification or esterification of the hydroxy group and by aldol condensation at the aldehyde group. AH three functional groups in vanillin are... [Pg.398]

Esters are most commonly prepared by the reaction of a carboxyHc acid and an alcohol with the elimination of water. Esters are also formed by a number of other reactions utilizing acid anhydrides, acid chlorides, amides, nitriles, unsaturated hydrocarbons, ethers, aldehydes, ketones, alcohols, and esters (via ester interchange). Detailed reviews of esterification are given in References 1—9. [Pg.374]

When the related saccharin derived sultam (R)-29 is converted into the (Z)-boron enolate and subsequently treated with aldehydes,. vy -diastereomers 30 result almost exclusively. Thus, the diasteromeric ratios, defined as the ratio of the major product to the sum of all other stereoisomers, surpass 99 1. Hydroperoxide assisted saponification followed by esterification provides carboxylic esters 31 with recovery of sultam 32106a. [Pg.503]

In an alternative approach, the isomeric unsaturated pyrrolidine or piperidine aldoximes 245 a and 245b were prepared and subjected to lOOC reaction affording 246a and 246b, respectively (Eq. 28). Esterification of 240 followed by N-tert-BOC protection and DIBALH reduction provided aldehyde 244 (X = 0) which was subjected to Wittig olefination. Introduction of a two carbon aldoxime chain on N in 244 (X = CH2) was carried out by alkylation with Et a-bromoacetate after deprotection of the N atom in 244. Reduction and oxima-tion led to 245. [Pg.35]

The ability of enzymes to achieve the selective esterification of one enantiomer of an alcohol over the other has been exploited by coupling this process with the in situ metal-catalysed racemisation of the unreactive enantiomer. Marr and co-workers have used the rhodium and iridium NHC complexes 44 and 45 to racemise the unreacted enantiomer of substrate 7 [17]. In combination with a lipase enzyme (Novozyme 435), excellent enantioselectivities were obtained in the acetylation of alcohol 7 to give the ester product 43 (Scheme 11.11). A related dynamic kinetic resolution has been reported by Corberdn and Peris [18]. hi their chemistry, the aldehyde 46 is readily racemised and the iridium NHC catalyst 35 catalyses the reversible reduction of aldehyde 46 to give an alcohol which is acylated by an enzyme to give the ester 47 in reasonable enantiomeric excess. [Pg.258]

The various thermal techniques give different results. Snee (1991) determined the heat of the esterification reaction between sec-butanol and propionic aldehyde using different thermal techniques. [Pg.371]

Notably, the Mukaiyama aldol/lactonizahon approach has been used in the total synthesis of panclicin D (2-258) [139b,c] and okinonellin B (2-261) (Scheme 2.61) [139d]. In the synthesis of 2-258, aldehyde 2-254 and the ketene acetal 2-255 were used to prepare the 3-lactone 2-256 with high simple and induced diastereoselectivity. There follows an esterification with the carboxylic acid 2-257. For the synthesis of 2-261, the aldehydes 2-259 and 2-252b were employed as substrates leading initially to the (1-lac tone 2-260. [Pg.87]

Several methods and reaction pathways have been reported for the conversion of glycerol in the literature, such as etherification, esterification [1], and oxidation [2], Via ionic dehydration acetol [3] and acrolein can be produced. The radical steps result in aldehydes, allyl alcohol, etc. [4], If the dehydration is followed by a hydrogenation step, propanediols (1,2- or 1,3-) can be obtained [5-6]. [Pg.437]

Wu and Sun have presented a versatile procedure for the liquid-phase synthesis of 1,2, ,4-tctrahydro-/i-carbolines [77]. After successful esterification of the MeO-PEG-OH utilized with Fmoc-protected tryptophan, one-pot cyclocondensations with various ketones and aldehydes were performed under microwave irradiation (Scheme 7.68). The desired products were released from the soluble support in good yields and high purity. The interest in this particular scaffold is due to the fact that the l,2,3,4-tetrahydro-/f-carboline pharmacophore is known to be an important structural element in several natural alkaloids, and that the template possesses multiple sites for combinatorial modifications. The microwave-assisted liquid-phase protocol furnished purer products than homogeneous protocols and product isolation/ purification was certainly simplified. [Pg.341]

Aldol reaction of keto-acid 21 with aldehyde 10 and esterification of the resulting acids with alcohol 22 led rapidly to cyclization precursor 23 and its 6S,7R-diastereomer (not shown). RCM using ruthenium initiator 3 (0.1 equiv) in dichloromethane (0.0015 M) at 25 °C afforded macrolactones 24a and 24b in a 1.2 1 ratio. Deprotection and epoxidation of the desired macrolactone, 24a, afforded epothilone A (4) via 25a (epothilone C) (Scheme 5). Varying a number of reaction parameters, such as solvent, temperature and concentration, failed to improve significantly the Z-selectivity of the RCM. However, in the context of the epothilone project, the formation of the E-isomer 24b could actually be viewed as beneficial since it allowed preparation of the epothilone A analog 26 for biological evaluation. [Pg.88]


See other pages where Aldehydes esterification is mentioned: [Pg.97]    [Pg.105]    [Pg.97]    [Pg.105]    [Pg.811]    [Pg.845]    [Pg.162]    [Pg.427]    [Pg.10]    [Pg.811]    [Pg.845]    [Pg.94]    [Pg.94]    [Pg.320]    [Pg.12]    [Pg.60]    [Pg.278]    [Pg.415]    [Pg.697]    [Pg.699]    [Pg.667]    [Pg.335]    [Pg.33]    [Pg.212]    [Pg.23]    [Pg.251]    [Pg.119]    [Pg.115]    [Pg.63]    [Pg.222]    [Pg.225]    [Pg.119]    [Pg.87]   
See also in sourсe #XX -- [ Pg.146 ]

See also in sourсe #XX -- [ Pg.52 ]




SEARCH



Aldehydes oxidative esterification

Aliphatic aldehydes oxidative esterification

Oxidative esterification of aldehydes

© 2024 chempedia.info