Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aldehydes enantioselective reactions

Because ketones are generally less reactive than aldehydes, cycloaddition reaction of ketones should be expected to be more difficult to achieve. This is well reflected in the few reported catalytic enantioselective cycloaddition reactions of ketones compared with the many successful examples on the enantioselective reaction of aldehydes. Before our investigations of catalytic enantioselective cycloaddition reactions of activated ketones [43] there was probably only one example reported of such a reaction by Jankowski et al. using the menthoxyaluminum catalyst 34 and the chiral lanthanide catalyst 16, where the highest enantiomeric excess of the cycloaddition product 33 was 15% for the reaction of ketomalonate 32 with 1-methoxy-l,3-butadiene 5e catalyzed by 34, as outlined in Scheme 4.26 [16]. [Pg.174]

Chiral oxazolidines 6, or mixtures with their corresponding imines 7, are obtained in quantitative yield from acid-catalyzed condensation of methyl ketones and ( + )- or ( )-2-amino-l-phcnylpropanol (norephedrine, 5) with azeotropic removal of water. Metalation of these chiral oxazolidines (or their imine mixtures) using lithium diisopropylamide generates lithioazaeno-lates which, upon treatment with tin(II) chloride, are converted to cyclic tin(II) azaenolates. After enantioselective reaction with a variety of aldehydes at 0°C and hydrolysis, ft-hydroxy ketones 8 are obtained in 58-86% op4. [Pg.600]

Enantioselective reactions involving q1 -allyltitanocenes are almost unknown. An attempt to realize an asymmetric transfer of the allyl group has been reported by Reetz [40], who employed a chiral titanium precursor with two different Cp groups and a stereo-genic center at the metal (CpCptBu(C6F5)Cl) [41]. However, the addition of the derived al-lyltitanium reagent to aldehydes was found to proceed with a low chiral induction (ee up to 11%) in this case. [Pg.460]

A major advancement for the subfield of enamine catalysis was achieved with the identification of aldehydes as useful donors for similar Mannich reactions.In particular, the addition of mono- or disubstituted aldehydes to ketoi-mines or aldimines, respectively, represents an elegant and highly efficient approach to the enantioselective construction of quaternary a-amino acids (Scheme 11A one-pot, three-component variant of the aldehyde Mannich reaction has also been recently disclosed (Scheme i 296-300... [Pg.328]

Enantioselective -Functionalization of Aldehydes and Ketones The direct and enantiosective functionalization of enolates or enolate equivalents with carbon-, nitrogen-, oxygen-, sulfur- or halogen-centered electrophiles represents a powerful transformation of chemical synthesis and of fundamental importance to modem practitioners of asymmetric molecule constmction. Independent studies from List, J0rgensen, Cordova, Hayashi, and MacMiUan have demonstrated the power of enamine catalysis, developing catalytic enantioselective reactions such as... [Pg.330]

Abstract The reversible reaction of primary or secondary amines with enolizable aldehydes or ketones affords nncleophilic intermediates, enamines. With chiral amines, catalytic enantioselective reactions via enamine intermediates become possible. In this review, structure-activity relationships and the scope as well as cnrrent limitations of enamine catalysis are discnssed. [Pg.29]

It is important to mention that the catalysis with this modified arylzinc reagent not only leads to improved enantioselectivity (at high product yield), but also that in this process swfestoichiometric quantities of diphenylzinc could be applied. This also meant that now both of the phenyl groups could be activated and transferred to the aldehydes. A reaction profile obtained by FT-IR studies revealed that the modification of the zinc reagent had a significant effect on its reactivity [41]. [Pg.183]

It is true that highly enantioselective reactions are possible with proline in the asymmetric a-amination of aldehydes by azodicarboxylates and in a-oxidation with nitrosobenzene. However, good rather than excellent yields and enantioselectivities are more common in intermolecular Michael and aldol reactions. Moreover, the high catalyst loadings required for proline-catalyzed aldol reactions (up to 30%), and low TOFs (from hours to days to achieve a good conversion, even at a high catalyst... [Pg.176]

Amino Alcohol Catalyzed Alkylation. (—)-3-exo-(Dimethylamino)-isobomeol [( —)-DAIB] is a sterically restrained jS-dialkylamino alcohol that has proven to be an extremely efficient catalyst 13). For instance, in the presence of 2 mol % of (—)-DAIB, the reaction of benzaldehyde and diethylzinc proceeds smoothly to give, after aqueous workup, (5)-1 -phenyl-1 -propanol in 98% ee and in 97% yield along with a small amount of benzyl alcohol (Scheme 9). Nonpolar solvents such as toluene, hexane, ether, or their mixtures produce satisfactory results. The optical yield in toluene is affected by temperature and decreases from 98% at —20°C to less than 95% at 50°C. The catalytic enantioselective reaction has been extended to a range of alkylating agents and aldehyde substrates, which are summarized in Scheme 10 (75). p-Substituted ben-... [Pg.334]

Keywords Aldol, Direct, Ketone, Asymmetric catalysis, Enantioselective reaction, Diastereo-selectivity, 1,2-Diol, Aldehyde, Enamine, Lewis acid, Bronsted base, Organocatalysis, Bimetal-... [Pg.135]

As an extension of this highly enantioselective Michael addition of silyl nitronates with a, p-unsaturated aldehydes, the reactions with cyclic a,p-unsaturated ketones as a Michael acceptor were also tested (Scheme 9.15). Cyclohexenone and cyclohepte-none were employed as a useful Michael acceptor with various silyl nitronates in the presence of catalyst (R,R)-6c, and gave the corresponding enol silyl ethers 28 with excellent stereoselectivities [30]. [Pg.202]

Some bifunctional 6 -OH Cinchona alkaloid derivatives catalyse the enantioselective hydroxyalkylation of indoles by aldehydes and a-keto esters.44 Indole, for example, can react with ethyl glyoxylate to give mainly (39) in 93% ee. The enan- tioselective reaction of indoles with iV-sulfonyl aldimines [e.g. (40)] is catalysed by the Cu(OTf)2 complex of (S)-benzylbisoxazoline (37b) to form 3-indolylmethanamine derivatives, in up to 96% ee [e.g. (41a)] 45 Some 9-thiourea Cinchona alkaloids have been found to catalyse the formation of 3-indolylmethanamines [e.g. (41b)] from indoles and /V-PhS02-phenyli mines in 90% ee.46 Aryl- and alkyl-imines also give enantioselective reactions. [Pg.194]

The substrate range - scope and limitations The reaction can be performed efficiently with a broad variety of ketone donors and aldehydes. Enantioselectivity, however, depends on the enolate structure (Scheme 6.11) [60, 61]. In general, eno-lates bearing larger, branched alkyl groups or a phenyl group result in lower enantioselectivity. The best results were obtained with enolates bearing a methyl substituent (product (S)-16, 87% ee) or a siloxymethyl substituent (product (S)-17, 86% ee). [Pg.142]

This coupling of an activated alkene derivative with an aldehyde is catalyzed by a tertiary amine (for example DABCO = 1,4-Diazabicyclo[2.2.2]octane). Phosphines can also be used in this reaction, and enantioselective reactions may be carried out if the amine or phosphine catalyst is asymmetric. [Pg.52]

Enantioselective aldol reactions.3 4 A related borane reagent, (R,R)-4, prepared by reaction of BBr3 with the N,N-bistosylsulfonamide of (R,R)-1, can effect highly enantioselective aldol reactions of ketones with aldehydes. Thus reaction of... [Pg.154]

According to the hypothetical catalytic cycle (Figure 36), the lanthanum atom is believed to function as a Lewis acid and a lithium binaphthoxide moiety as a Brpnsted base. The nature of the coordination of the aldehyde appears to be of first importance. This coordination provides activation of the aldehyde for reaction with the hypothetical LLB-enolate (II) (which on the basis of pKa values can be present at most in low concentration), and also controls of the orientation of the aldehyde for enantioselective reaction. A H NMR study also supports the existence of the coordination between aldehydes and the lanthanum cation.89... [Pg.243]

Multiatomic [6] as well as cationic [7] rhodium catalysts also display a high preference for linear hydroformylation products. However, a catalyst system which generally yields branched hydroformylation products has not yet been found. Vinylarenes, such as styrene (16), form preferentially the (.vo-aldehyde 20 and not the n-aldehydes. The possibility to form a relatively stable Rh- -allyl complex 18 is most likely the decisive factor for this result [8]. Subsequent oxidation of 20 leads to 2-arylpropionic acids 21, of which some derivatives like 22-24 are of great importance as non-steroidal inflammatory drugs (NSID) (Scheme 3) [9]. For their synthesis by the hydroformylation of styrenes, not only a regioselective but also an enantioselective reaction process is... [Pg.99]


See other pages where Aldehydes enantioselective reactions is mentioned: [Pg.163]    [Pg.168]    [Pg.316]    [Pg.809]    [Pg.1337]    [Pg.198]    [Pg.202]    [Pg.518]    [Pg.517]    [Pg.164]    [Pg.152]    [Pg.384]    [Pg.396]    [Pg.250]    [Pg.72]    [Pg.434]    [Pg.402]    [Pg.14]    [Pg.206]    [Pg.142]    [Pg.115]    [Pg.358]    [Pg.369]    [Pg.124]    [Pg.153]    [Pg.219]    [Pg.74]    [Pg.339]    [Pg.333]    [Pg.116]    [Pg.119]    [Pg.206]    [Pg.115]    [Pg.106]   


SEARCH



Aldehydes enantioselective

Enantioselective reaction

Enantioselective reactions (continued aldehydes

Enantioselective reactions addition of organozinc reagents to aldehydes

Enantioselective synthesis reactions, aldehydes

Enantioselectivity aldehydes

© 2024 chempedia.info