Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chloride Aldehydes

Ethylene oxide, 5SWt = 100.00 %Wt (acidity + water + aldehyde + chloride + nonvolatile residue)... [Pg.162]

Moreover, Dutch liquid has no resemblance to aldehyde. Chloride of carbon, by the action of water, is not transformed into carbonic oxide in one word, bibasic water does not resemble monobasic hydrochloric acid ... [Pg.200]

Gattermann-Koch reaction Formylation of an aromatic hydrocarbon to yield the corresponding aldehyde by treatment with CO, HCl and AICI3 at atmospheric pressure CuCl is also required. The reaction resembles a Friedel-Crafts acylation since methanoyl chloride, HCOCl, is probably involved. [Pg.187]

Iron(III) chloride forms numerous addition compounds, especially with organic molecules which contain donor atoms, for example ethers, alcohols, aldehydes, ketones and amines. Anhydrous iron(III) chloride is soluble in, for example, ether, and can be extracted into this solvent from water the extraction is more effective in presence of chloride ion. Of other iron(III) halides, iron(III) bromide and iron(III) iodide decompose rather readily into the +2 halide and halogen. [Pg.394]

It will also reduce acid chlorides, acid anhydrides and aldehydes to primary alcohols, ketones to secondary alcohols, and amides to the corresponding amines R-CONHi -> R CHiNH. Nitro-hydrocarbons if aromatic are... [Pg.155]

The Fischer Indolisation Reaction occurs when the phenylhydrazone of a suitable aldehyde or ketone undergoes cyclisation with loss of ammonia, under the influence of various reagents, such as zinc chloride, ethnnolic hydrogen chloride, or acetic acid. For example, the phenylhydrazone of acetophenone (p. 257) when heated with zinc chloride gives 2 phenylindole. ... [Pg.294]

Ferric chloride coloration. Add a few drops of FeClj solution to a few drops of the aldehyde an intense violet coloration is produced, a. Does not restore the colour to Schiff s reagent. [Pg.344]

Almost insoluble in cold water. Higher alcohols (including benzyl alcohol), higher phenols (e.g., naphthols), metaformaldehyde, paraldehyde, aromatic aldehydes, higher ketones (including acetophenone), aromatic acids, most esters, ethers, oxamide and domatic amides, sulphonamides, aromatic imides, aromatic nitriles, aromatic acid anhydrides, aromatic acid chlorides, sulphonyl chlorides, starch, aromatic amines, anilides, tyrosine, cystine, nitrocompounds, uric acid, halogeno-hydrocarbons, hydrocarbons. [Pg.404]

The industrial process for preparing the reagent usually permits a little hydrolysis to occur, and the product may contain a little free calcium hydroxide or basic chloride. It cannot therefore be employed for drying acids or acidic liquids. Calcium chloride combines with alcohols, phenols, amines, amino-acids, amides, ketones, and some aldehydes and esters, and thus cannot be used with these classes of compounds. [Pg.140]

Anhydrous magnesium sulphate. This is an excellent, neutral desiccating agent and is inexpensive. It is rapid in its action, chemically inert and fairly efficient, and can be employed for most compounds including those (esters, aldehydes, ketones, nitriles, amides, etc.) to which calcium chloride is not applicable. [Pg.140]

Metallic sodium. This metal is employed for the drying of ethers and of saturated and aromatic hydrocarbons. The bulk of the water should first be removed from the liquid or solution by a preliminary drying with anhydrous calcium chloride or magnesium sulphate. Sodium is most effective in the form of fine wire, which is forced directly into the liquid by means of a sodium press (see under Ether, Section II,47,i) a large surface is thus presented to the liquid. It cannot be used for any compound with which it reacts or which is affected by alkalis or is easily subject to reduction (due to the hydrogen evolved during the dehydration), viz., alcohols, acids, esters, organic halides, ketones, aldehydes, and some amines. [Pg.143]

The only important precaution in this preparation is to ensure an excess of zinc chloride over sodium cyanide. If the latter is in excess, the zinc cyanide generally precipitates as a sticky mass, which is difficult to filter and unsatisfactory for the preparation of hydroxy-aldehydes. [Pg.201]

From nitriles by treatment with anhydrous Stannous chloride dissolved in ether saturated with hydrogen chloride the resulting crystaUine aldimine stannichloride, [(RCH=NHj)2] SnCl, or (RCH=NH,HCl)2SnCl4, is hydrolysed by warm water, and the aldehyde is isolated by distillation with steam or by extraction with a solvent (Stephen reaction), for example, for R = CH3(CH2)4, i.e., n-amyl ... [Pg.318]

It is marketed as a 35-40 per cent, solution in water (formalin). The rpactions of formaldehyde are partly typical of aldehydes and partly peculiar to itself. By evaporating an aqueous solution paraformaldehyde or paraform (CHjO), an amorphous white solid is produced it is insoluble in most solvents. When formaldehyde is distilled from a 60 per cent, solution containing 2 per cent, of sulphuric acid, it pol5unerises to a crystalline trimeride, trioxane, which can be extracted with methylene chloride this is crystalline (m.p. 62°, b.p. 115°), readily soluble in water, alcohol and ether, and devoid of aldehydic properties ... [Pg.319]

The 5-nitrosallcylaldehyde reagent is prepared as follows. Add 0-5 g. of 5-nitrosalicylaldehyde (m.p. 124-125°) to 15 ml. of pure triethanolamine and 25 ml. of water shake until dissolved. Then introduce 0-5 g. of crystallised nickel chloride dissolved in a few ml. of water, and dilute to 100 ml. with water. If the triethanolamine contains some ethanolamine (thus causing a precipitate), it may be necessary to add a further 0 - 5 g. of the aldehyde and to filter off the resulting precipitate. The reagent is stable for long periods. [Pg.421]

Dissolve 57 g. of dry malonic acid in 92 5 ml. of dry P3rridine contained in a 500 ml. round-bottomed flask, cool the solution in ice, and add 57 g. (70 ml.) of freshly distilled n-heptaldehyde (oenanthol) with stirring or vigorous shaking. After a part of the aldehyde has been added, the mixture rapidly seta to a mass of crystals. Insert a cotton wool (or calcium chloride) tube into the mouth of the flask and allow the mixture to stand at room temperature for 60 hours with frequent shaking. Finally, warm the mixture on a water bath until the evolution of carbon dioxide ceases (about 8 hours) and then pour into an equal volume of water. Separate the oily layer and shake it with 150 ml. of 25 per cent hydrochloric acid to remove pyridine. Dissolve the product in benzene, wash with water, dry with anhydrous magnesium sulphate, and distil under reduced pressure. Collect the ap-nonenoic acid at 130-13272 mm. The yield is 62 g. [Pg.466]

In the strongly basic medium, the reactant is the phenoxide ion high nucleophilic activity at the ortho and para positions is provided through the electromeric shifts indicated. The above scheme indicates theorpara substitution is similar. The intermediate o-hydroxybenzal chloride anion (I) may react either with a hydroxide ion or with water to give the anion of salicyl-aldehyde (II), or with phenoxide ion or with phenol to give the anion of the diphenylacetal of salicylaldehyde (III). Both these anions are stable in basic solution. Upon acidification (III) is hydrolysed to salicylaldehyde and phenol this probably accounts for the recovery of much unreacted phenol from the reaction. [Pg.692]

Heat a suspension of 22 g. of the diacetate in a mixture of 120 ml. of concentrated hydrochloric acid, 190 ml. of water and 35 ml. of alcohol under reflux for 45 minutes. Cool the mixture to 0°, filter the solid with suction, and wash with water. Purify the crude aldehyde by rapid steam distillation (Fig. II, 41, 3) collect about 1500 ml. of distillate during 15 minutes, cool, filter, and dry in a vacuum desiccator over calcium chloride. The yield of pure o-nitrobenzaldehyde, m.p. 44—45°, is 10 g. The crude solid may also be purified after drying either by distillation under reduced pressure (the distillate of rather wide b.p., e.g., 120-144°/3-6 mm., is quite pure) or by dissolution in toluene (2-2-5 ml. per gram) and precipitation with light petroleum, b.p. 40°-60° (7 ml. per ml. of solution). [Pg.696]

The stock solution of quinoline-sulphur poison is prepared by refluxing I g. of sulphur with 6 g. of quinoline for 5 hours and diluting the resulting brown liquid to 70 nJ. with xylene which has been purified by distilling over anhydrous aluminium chloride. The addition of the quinoline - sulphur poison ensures that the reduction does not proceed beyond the aldehyde stage it merely slows up the reaction and has no harmful effects. [Pg.700]

By the condensation of a nitrile with a phenol or phenol ether in the presence of zinc chloride and hydrogen chloride a hydroxyaryl- or alkoxyaryl-ketone is produced. The procedure is termed the Hoesch reaction and is clearly an extension of the Gattermann aldehyde reaction (Section IV,121). The reaction gives the best results with polyhydric phenols and their ethers with simple monohydric phenols the imino ester hydrochloride is frequently the sole product for example ... [Pg.727]

An important general method of preparing indoles, known as the Fischer Indole synthesis, consists in heating the phenylhydrazone of an aldehyde, ketone or keto-acld in the presence of a catalyst such as zinc chloride, hydrochloric acid or glacial acetic acid. Thus acrtophenone phenylhydrazone (I) gives 2-phenyllndole (I V). The synthesis involves an intramolecular condensation with the elimination of ammonia. The following is a plausible mechanism of the reaction ... [Pg.851]

This is another reason why aldehydes, ketones and esters must be tested for in the order already given, and why it is necessary to employ both the sodium and acetyl chloride testa. [Pg.1066]

Acid Chlorides -r H2, Pd/BaS04 Aldehydes (Rosemund Reduction)... [Pg.30]


See other pages where Chloride Aldehydes is mentioned: [Pg.162]    [Pg.53]    [Pg.369]    [Pg.369]    [Pg.23]    [Pg.162]    [Pg.53]    [Pg.369]    [Pg.369]    [Pg.23]    [Pg.19]    [Pg.19]    [Pg.28]    [Pg.82]    [Pg.93]    [Pg.99]    [Pg.133]    [Pg.163]    [Pg.163]    [Pg.253]    [Pg.254]    [Pg.306]    [Pg.420]    [Pg.324]    [Pg.691]    [Pg.698]    [Pg.702]    [Pg.703]    [Pg.705]    [Pg.892]   
See also in sourсe #XX -- [ Pg.426 ]

See also in sourсe #XX -- [ Pg.633 ]

See also in sourсe #XX -- [ Pg.213 ]




SEARCH



© 2024 chempedia.info