Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aldehydes anodic

Allylation of aldehydes and ketones by reagents, electrochemically generated at the cadmium anode from allyl bromides, are also known30. [Pg.393]

Pulsed amperometric detection (PAD), introduced by Johnson and LaCourse (64, 65) has greatly enhanced the scope of liquid chromatography/electrochemistry (66). This detection mode overcomes the problem of loss of activity of noble metal electrodes associated with the fixed-potential detection of compounds such as carbohydrates, alcohols, amino acids, or aldehydes. Pulsed amperometric detection couples tlie process of anodic detection with anodic cleaning and cathodic reactivation of a noble metal electrode, thus assuring a continuously cleaned and active... [Pg.92]

In the future, further studies should be addressed to improve the chemose-lectivity and diastereoselectivity of the reductive coupling process, especially searching for novel reagents and milder experimental conditions. As a matter of fact, a few novel reductive couphng procedures which showed improved efficiency and/or stereoselectivity have not been further apphed to optically active imines. For example, a new electrochemical procedure which makes use of the spatially addressable electrolysis platform with a stainless steel cathode and a sacrificial aluminum anode has been developed for imines derived from aromatic aldehydes, and the use of the N-benzhydryl substituent allowed 1,2-diamines to be obtained with good yields and dl-to-meso ratios... [Pg.12]

The electrosynthesis of 4-methoxybenzaldehyde (anisaldehyde) from 4-methoxy-toluene by means of direct anodic oxidation is performed on an industrial scale [69]. Via an intermediate methyl ether derivative, the corresponding diacetal is obtained, which can be hydrolyzed to the target product. The different types of products - ether, diacetal, aldehyde - correspond to three distinct single oxidation steps. [Pg.545]

OH/oxide species. At potentials anodic of 1 V, incomplete oxidation of formaldehyde to formic acid is activated, while methanol oxidation is almost completely hindered. This reflects an easier oxidation of the C-H group in the aldehyde than in the alcohol. For the negative-going scan, where the COadouble-peak stmcture in the current efficiency. [Pg.453]

Figure 17.19 A membianeless ethanol/02 enz3fme fuel cell. Alcohol dehydrogenase and aldehyde dehydrogenase catalyze a stepwise oxidation of ethanol to acetaldehyde and then to acetate, passing electrons to the anode via the mediator NAD+/NADH. At the carhon cathode, electrons are passed via the [Ru(2,2 -bipyridyl)3] and biUverdin/bilimbin couples to bilirubin oxidase, which catalyzes O2 reduction to H2O. (a) Schematic representation of the reactions occruring. (b) Power/cmrent response for the ceU operating in buffered solution at pH 7.15, containing 1 mM ethanol and 1 mM NAD. Panel (b) reprinted from Topcagic and Minteer [2006]. Copyright Elsevier, 2006. Figure 17.19 A membianeless ethanol/02 enz3fme fuel cell. Alcohol dehydrogenase and aldehyde dehydrogenase catalyze a stepwise oxidation of ethanol to acetaldehyde and then to acetate, passing electrons to the anode via the mediator NAD+/NADH. At the carhon cathode, electrons are passed via the [Ru(2,2 -bipyridyl)3] and biUverdin/bilimbin couples to bilirubin oxidase, which catalyzes O2 reduction to H2O. (a) Schematic representation of the reactions occruring. (b) Power/cmrent response for the ceU operating in buffered solution at pH 7.15, containing 1 mM ethanol and 1 mM NAD. Panel (b) reprinted from Topcagic and Minteer [2006]. Copyright Elsevier, 2006.
Minteer and co-workers have also exploited the broad substrate specificity of PQQ-dependent alcohol dehydrogenase and aldehyde dehydrogenase from Gluconobacter species trapped within Nahon to oxidize either ethanol or glycerol at a fuel cell anode [Arechederra et al., 2007]. Although the alcohol dehydrogenase incorporates a series of heme electron transfer centers, it is unlikely that many enzyme molecules trapped within the mediator-free Nahon polymer are electronically engaged at the electrode. [Pg.626]

The reactions appear to be similar to organometallic synthesis, where the reduction is performed by the metal instead of electricity. However, these reactions have been shown to be essentially different from the corresponding organometallic reactions. This method has valuable advantages. As the anode reaction is controlled, an undivided cell can be used, the reaction occurs in one-step, the conditions are quite simple, and so on. Sibille and Perichon et al. have found that the sacrificial zinc anode is quite effective for trifluoromethylation of aldehydes to form trifluoromethylated alcohols in almost quantitative yields (Eq. 6) [19]. The reaction proceeds via the reduction of Zinc(II) salts, followed by a chemical reaction between the reduced metal, CF3Br, and aldehyde. [Pg.19]

Fig. 12. Electroenzymatic oxidation of p-cresol under catalysis by PCMH in. long-time batch electrolysis under formation of p-hydroxy benzylalcohol (alcohol) and p-b. .roxy benzaldehyde (aldehyde) (PCMH 16 U = 5.6 nmol PEG-20000 ferrocene 3 0.51 mmr - 9.45 pmol ferrocene starting concentration of p-cresol 41.25 mM = 0.66 mmol additions o. substrate after 4140 min (0,0925 mmol), 5590 min (0.0784 mmol), 6630 min (0.184 mmol), 11253 min (0.371 mmol), in 10 ml tris/HCl-buffer of pH 7.6 divided cell Sigraflex-anode 26 cm2)... Fig. 12. Electroenzymatic oxidation of p-cresol under catalysis by PCMH in. long-time batch electrolysis under formation of p-hydroxy benzylalcohol (alcohol) and p-b. .roxy benzaldehyde (aldehyde) (PCMH 16 U = 5.6 nmol PEG-20000 ferrocene 3 0.51 mmr - 9.45 pmol ferrocene starting concentration of p-cresol 41.25 mM = 0.66 mmol additions o. substrate after 4140 min (0,0925 mmol), 5590 min (0.0784 mmol), 6630 min (0.184 mmol), 11253 min (0.371 mmol), in 10 ml tris/HCl-buffer of pH 7.6 divided cell Sigraflex-anode 26 cm2)...
BASF has developed a direct electrochemical process based on anodic acetoxylation for the production of aromatic aldehydes on industrial scale [40,146,147]. The reaction passes smoothly through the benzyl acetate stage. [Pg.165]

For the dehydrogenation of CH—XH structures, for example, of alcohols to ketones, of aldehydes to carboxylic acids, or of amines to nitriles, there is a wealth of anodic reactions available, such as the nickel hydroxide electrode [126], indirect electrolysis [127, 128] (Chapter 15) with I , NO, thioanisole [129, 130], or RUO2/CP [131]. Likewise, selective chemical oxidations (Cr(VI), Mn02, MnOJ, DMSO/AC2O, Ag20/Celite , and 02/Pt) [94] are available for that purpose. The advantages of the electrochemical conversion are a lower price, an easier scale-up, and reduced problems of pollution. [Pg.83]

Scheme 19 Anodic oxidation of aldehydes to carboxylic acids at the nickel oxide electrode. Scheme 19 Anodic oxidation of aldehydes to carboxylic acids at the nickel oxide electrode.
One of the first notions of EGA-catalyzed reactions was the rationalization [8, 14] of the unexpected outcome of anodic oxidation of methyl arenes, (1), in MeGN containing various amounts of water. Preferentially A-benzyl acetamides, (3), rather than the benzyl alcohols, (2), were formed [15, 16] (with increasing amounts of water, increasing amounts of aldehyde was formed as a side product [16]). Since water is a more powerful nucleophile than MeCN, it is reasonable to believe that the carbocation formed by overall two-electron oxidation and deprotonation is initially trapped by water. However, the process is reversible in the presence of a strong EGA (protons liberated from the oxidized substrate), and the carbocation is eventually trapped by the excess MeCN, Scheme 1. [Pg.455]

Transformation of amines to aldehydes or ketones can be carried out via the anodic a-methoxylation of the corresponding carbamates, (4), followed by an acid-catalyzed conversion of the a-methoxylated... [Pg.455]

In 1981 we published the first paper [22] on the synthesis of s-triazolo[4,3-a]pyridinium salts, 4, by the anodic oxidation of hydrazones 3 in the presence of pyridine (Scheme 5). In our working mechanistic scheme we proposed nitrilimine as the possible intermediate and pointed out that this reaction opens the door to a wide range of heterocyclic systems via anodic oxidation of aldehyde hydrazones through 1,3-dipolar cycloaddition reactions of the nitrilimine involved. [Pg.95]

Interest is mounting in this state, promoted once again by its possible implication in biological systems. Galactose oxidase, for example, is a copper enzyme which catalyses the oxidation of galactose to the corresponding aldehyde. The tervalent oxidation state may be prepared from Cu(II) by chemical, anodic and radical oxidation. Cu(III) complexes of peptides and macrocycles have been most studied, particularly from a mechanistic viewpoint. The oxidation of I" by Cu(III)-deprotonated peptide complexes and by imine-oxime complexes have a similar rate law... [Pg.418]

This approach was coupled to a system of three NAD+-dependent enzymes comprised of alcohol dehydrogenase (EC 1.1.1.1), aldehyde dehydrogenase (EC 1.2.1.3), and formate dehydrogenase (EC 1.2.1.2) to create an electrode theoretically capable of complete oxidation of methanol to carbon dioxide, as shown in Eigure 5. The anode was, in turn, coupled to a platinum-catalyzed oxygen cathode to produce a complete fuel cell operating at pH 7.5. With no externally applied convection, the cell produced power densities of 0.67 mW/cm at 0.49 V for periods of less than 1 min, before the onset of concentration polarization. [Pg.636]

Figure 5. Oxidation of methanol to carbon dioxide by a three-enzyme system consisting of alcohol (ADH), aldehyde (AldDH), and formate (FDH) dehydrogenases. Each enzyme is NAD+-dependent, and the NAD+ is regenerated by the anode via a redox mediator system. Redrawn with permission from ref 82. Copyright 1998 Elsevier Science S.A. Figure 5. Oxidation of methanol to carbon dioxide by a three-enzyme system consisting of alcohol (ADH), aldehyde (AldDH), and formate (FDH) dehydrogenases. Each enzyme is NAD+-dependent, and the NAD+ is regenerated by the anode via a redox mediator system. Redrawn with permission from ref 82. Copyright 1998 Elsevier Science S.A.
Early electrochemical processes for the oxidation of alcohols to ketones or carboxylic acids used platinum or lead dioxide anodes, usually with dilute sulphuric acid as electrolyte. A divided cell is only necessary in the oxidation of primary alcohols to carboxylic acids if (he substrate possesses an unsaturated function, which could be reduced at the cathode [1,2]. Lead dioxide is the better anode material and satisfactory yields of the carboxylic acid have been obtained from oxidation of primary alcohols up to hexanol [3]. Aldehydes are intermediates in these reactions. Volatile aldehydes can be removed from the electrochemical cell in a... [Pg.261]


See other pages where Aldehydes anodic is mentioned: [Pg.17]    [Pg.227]    [Pg.408]    [Pg.432]    [Pg.626]    [Pg.375]    [Pg.66]    [Pg.233]    [Pg.98]    [Pg.144]    [Pg.163]    [Pg.209]    [Pg.290]    [Pg.411]    [Pg.411]    [Pg.412]    [Pg.476]    [Pg.502]    [Pg.569]    [Pg.121]    [Pg.161]    [Pg.402]    [Pg.25]    [Pg.361]    [Pg.345]    [Pg.6]    [Pg.110]    [Pg.198]    [Pg.203]    [Pg.262]    [Pg.263]   
See also in sourсe #XX -- [ Pg.631 , Pg.632 ]




SEARCH



Anodic Oxidation of Aldehydes to Carboxylic Acids

© 2024 chempedia.info