Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alcohols oxiranes

Ojima and co-workers have undertaken extensive research into the formation of AT-acyl-a-amino acids via amidocarbonylation chemistry [5]. Their focus includes the generation of A -acyl-a-amino acids directly from allyl alcohols, oxiranes, or olefins using homogeneous binary catalyst systems, particularly cobalt octacarbo-nyl - Group VIII transition-metal complex combinations. New catalytic processes feature ... [Pg.157]

Mixed-metal catalysts based on 002(00)9 have proved effective In the synthesis of N acyl amlnoaclds, starting with either allylic alcohols, oxiranes (eqn.15) or trifluoropropene. The oxidative carbonylatlon of organomercury compounds Is subject to solvent effects. The Pd catalysed carbonylative cross-coupling of aryl Iodides with triIsobutylaluminium gives secondary benzyl alcohols a variety of functional groups are tolerated.Carbamate esters... [Pg.393]

In stereoselective antitheses of chiral open-chain molecules transformations into cyclic precursors should be tried. The erythro-configurated acetylenic alcohol given below, for example, is disconnected into an acetylene monoanion and a symmetrical oxirane (M. A. Adams, 1979). Since nucleophilic substitution occurs with inversion of configuration this oxirane must be trens-conilgurated its precursor is commercially available trans-2-butene. [Pg.204]

The unconjugated alkenyl oxirane 133 reacts with aryl halides to afford the arylated allylic alcohol 134. The reaction is explained by the migration of the Pd via the elimination and readdition of H—Pd—1[107]. [Pg.146]

Organoboranes are reactive compounds for cross-coupling[277]. The synthesis of humulene (83) by the intramolecular cross-coupling of allylic bromide with alkenylborane is an example[278]. The reaction of vinyiborane with vinyl-oxirane (425) affords the homoallylic alcohol 426 by 1,2-addition as main products and the allylic alcohol 427 by 1,4-addition as a minor product[279]. Two phenyl groups in sodium tetraphenylborate (428) are used for the coupling with allylic acetate[280] or allyl chloride[33,28l]. [Pg.347]

The 2-(l-alkynyl)oxirane 78 reacts with an organozinc reagent yielding the /9-allenylic alcohol 79[35]. [Pg.464]

An oxirane process utilizes ethylbenzene to make the hydroperoxide, which then is used to make propylene oxide [75-56-9]. The hydroperoxide-producing reaction is similar to the first step of cumene LPO except that it is slower (2,224,316—318). In the epoxidation step, a-phenylethyl alcohol [98-85-1] is the coproduct. It is dehydrated to styrene [100-42-5]. The reported 1992 capacity for styrene by this route was 0.59 X 10 t/yr (319). The corresponding propylene oxide capacity is ca 0.33 x 10 t/yr. The total propylene oxide capacity based on hydroperoxide oxidation of propylene [115-07-1] (coproducts are /-butyl alcohol and styrene) is 1.05 x 10 t/yr (225). [Pg.345]

Oxirane Process. In Arco s Oxirane process, tert-huty alcohol is a by-product in the production of propylene oxide from a propjiene—isobutane mixture. Polymer-grade isobutylene can be obtained by dehydration of the alcohol. / fZ-Butyl alcohol [75-65-0] competes directly with methyl-/ fZ-butyl ether as a gasoline additive, but its potential is limited by its partial miscibility with gasoline. Current surplus dehydration capacity can be utilized to produce isobutylene as more methyl-/ fZ-butyl ether is diverted as high octane blending component. [Pg.367]

There are currentiy three important processes for the production of isobutylene (/) the extraction process using an acid to separate isobutylene (2) the dehydration of tert-huty alcohol, formed in the Arco s Oxirane process and (3) the cracking of MTBE. The expected demand for MTBE wHl preclude the third route for isobutylene production. Since MTBE is likely to replace tert-huty alcohol as a gasoline additive, the second route could become an important source for isobutylene. Nevertheless, its avaHabHity wHl be limited by the demand for propylene oxide, since it is only a coproduct. An alternative process is emerging that consists of catalyticaHy hydroisomerizing 1-butene to 2-butenes (82). In this process, trace quantities of butadienes are also hydrogenated to yield feedstocks rich in isobutylene which can then be easHy separated from 2-butenes by simple distHlation. [Pg.368]

The handling of toxic materials and disposal of ammonium bisulfate have led to the development of alternative methods to produce this acid and the methyl ester. There are two technologies for production from isobutylene now available ammoxidation to methyl methacrylate (the Sohio process), which is then solvolyzed, similar to acetone cyanohydrin, to methyl methacrylate and direct oxidation of isobutylene in two stages via methacrolein [78-85-3] to methacryhc acid, which is then esterified (125). Since direct oxidation avoids the need for HCN and NH, and thus toxic wastes, all new plants have elected to use this technology. Two plants, Oxirane and Rohm and Haas (126), came on-stream in the early 1980s. The Oxirane plant uses the coproduct tert-huty alcohol direcdy rather than dehydrating it first to isobutylene (see Methacrylic acid). [Pg.373]

Oxiranes have been isomerized by palladium compounds to allylic alcohols and enones (79JA1623), and to 1,3-diketones (80JA2095). [Pg.105]

The commonest of these for oxirane opening are amines and azide ion [amide ions promote isomerization to allylic alcohols (Section 5.05.3.2.2)]. Reaction with azide can be used in a sequence for converting oxiranes into aziridines (Scheme 49) and this has been employed in the synthesis of the heteroannulenes (57) and (58) (80CB3127, 79AG(E)962). [Pg.111]

Reaction with selenophenoxide ion is one step in a method of converting oxiranes to allylic alcohols under mild conditions (Scheme 51) (73JA2697) (c/. Sections 5.05.3.2.2 and 5.05.3.4.3(/)). [Pg.111]

Oxiranes react with iodotrimethylsilane to give silylated halo alcohols e.g. 60) which can be converted to allylic alcohols (Scheme 53) (80JOC2579, 80TL2329) cf. other syntheses of allylic alcohols (Sections 5.05.3.2.2, 5.05.3.4.3(0 and Hi)). [Pg.111]

Reductive cleavage of oxiranes to alcohols by lithium aluminum hydride is an important reaction (64HC(19-1)199), but the most powerful hydride donor for this purpose is lithium triethylborohydride (73JA8486). [Pg.112]

The remarkable stereospecificity of TBHP-transition metal epoxidations of allylic alcohols has been exploited by Sharpless group for the synthesis of chiral oxiranes from prochiral allylic alcohols (Scheme 76) (81JA464) and for diastereoselective oxirane synthesis from chiral allylic alcohols (Scheme 77) (81JA6237). It has been suggested that this latter reaction may enable the preparation of chiral compounds of complete enantiomeric purity cf. Scheme 78) ... [Pg.116]

The reactions of oxiranes with thiocyanate ion or with thiourea are usually done in homogeneous solution in water, alcohols or alcohol-acetic acid. The use of silica gel as a support for potassium thiocyanate in toluene solvent is advantageous for the simple work-up (filtration and evaporation of solvent) (80JOC4254). A crown ether has been used to catalyze reactions of potassium thiocyanate. [Pg.179]

Group of plastics composed of resins produced by reactions of epoxides or oxiranes with compounds such as amines, phenols, alcohols, carboxylic acids, acid anhydrides and unsaturated compounds. [Pg.132]

Alcoholic potassium hydroxide or sodium hydroxide are normally used to convert the halohydrins to oxiranes. Other bases have also been employed to effect ring closure in the presence of labile functional groups such as a-ketols, e.g., potassium acetate in ethanol, potassium acetate in acetone or potassium carbonate in methanol.However, weaker bases can lead to solvolytic side reactions. Ring closure under neutral conditions employing potassiunT fluoride in dimethyl sulfoxide, dimethylformamide or A-methyl-pyrrolidone has been reported in the patent literature. [Pg.17]

Due to the abundance of epoxides, they are ideal precursors for the preparation of P-amino alcohols. In one case, ring-opening of 2-methyl-oxirane (18) with methylamine resulted in l-methylamino-propan-2-ol (19), which was transformed to 1,2-dimethyl-aziridine (20) in 30-35% yield using the Wenker protocol. Interestingly, l-amino-3-buten-2-ol sulfate ester (23) was prepared from l-amino-3-buten-2-ol (22, a product of ammonia ring-opening of vinyl epoxide 21) and chlorosulfonic acid. Treatment of sulfate ester 23 with NaOH then led to aziridine 24. ... [Pg.65]

Reaction of pyroc techol with epichlorohydrin in the presence of base affords the benzodioxan derivative, 136, (The reaction may well involve initial displacement of halogen by phenoxide followed by opening of the oxirane by the anion from the second phenolic group.) Treatment of the alcohol with thio-nyl chloride gives the corresponding chloro compound (137). Displacement of halogen by means of diethylamine affords piper-oxan (138), a compound with a-sympathetic blocking activity. [Pg.352]

Substitution of an additional nitrogen atom onto the three-carbon side chain also serves to suppress tranquilizing activity at the expense of antispasmodic activity. Reaction of phenothia zine with epichlorohydrin by means of sodium hydride gives the epoxide 121. It should be noted that, even if initial attack in this reaction is on the epoxide, the alkoxide ion that would result from this nucleophilic addition can readily displace the adjacent chlorine to give the observed product. Opening of the oxirane with dimethylamine proceeds at the terminal position to afford the amino alcohol, 122. The amino alcohol is then converted to the halide (123). A displacement reaction with dimethylamine gives aminopromazine (124). ... [Pg.390]


See other pages where Alcohols oxiranes is mentioned: [Pg.257]    [Pg.257]    [Pg.70]    [Pg.366]    [Pg.73]    [Pg.372]    [Pg.97]    [Pg.103]    [Pg.105]    [Pg.113]    [Pg.116]    [Pg.546]    [Pg.283]    [Pg.232]    [Pg.33]    [Pg.176]    [Pg.196]    [Pg.99]    [Pg.182]    [Pg.299]    [Pg.308]   
See also in sourсe #XX -- [ Pg.458 ]




SEARCH



Alcohols synthesis from oxiranes

Allylic alcohols, enantioselective oxirane

Oxirane reactions with alcohols

Oxirans 2-amino alcohol

© 2024 chempedia.info