Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alcohol chromatography

Figure 3.20. Analysis of carboxylic acids and alcohols by reversed phase HPLC, with indirect UV detection, (a) Carboxylic acids. Chromatography conditions mobile phase, 3 X 10 4 M l-phenethyl-2-picolinium in acetate buffer (pH 4.6) column, ju-Bondapak phenyl detection, indirect UV absorbance at 254 nm. Peaks 1, acetic acid 2, propionic acid 3, butyric acid 4, valeric acid 5, caproic acid S, system peak, (b) Aliphatic alcohols. Chromatography conditions mobile phase, 4 x 10 4 M nicotinamide in water column. Ultrasphere ODS detection, indirect UV absorbance at 268 nm. Peaks 1, methanol 2, propylene glycol 3, ethanol 4, 2-propanol 5, 1-propanol 6, system peak 7, 2-butanol 8, 2-methyl-l-propanol 9, 1-butanol. (Redrawn from Refs. 23 and 24 with permission.)... Figure 3.20. Analysis of carboxylic acids and alcohols by reversed phase HPLC, with indirect UV detection, (a) Carboxylic acids. Chromatography conditions mobile phase, 3 X 10 4 M l-phenethyl-2-picolinium in acetate buffer (pH 4.6) column, ju-Bondapak phenyl detection, indirect UV absorbance at 254 nm. Peaks 1, acetic acid 2, propionic acid 3, butyric acid 4, valeric acid 5, caproic acid S, system peak, (b) Aliphatic alcohols. Chromatography conditions mobile phase, 4 x 10 4 M nicotinamide in water column. Ultrasphere ODS detection, indirect UV absorbance at 268 nm. Peaks 1, methanol 2, propylene glycol 3, ethanol 4, 2-propanol 5, 1-propanol 6, system peak 7, 2-butanol 8, 2-methyl-l-propanol 9, 1-butanol. (Redrawn from Refs. 23 and 24 with permission.)...
For chromatographic purposes mercaptans can be converted to 3,5-dinitro-benzoyl thioesters by the usual procedure, described in the chapter on alcohols. Chromatography is also carried out as in the case of 3,5-dinitro-... [Pg.387]

Poly(vinyI acetate-co-vinyl alcohol) Chromatography Acetonitrile + 50 mM aqueous SEC, vinyl alcohol copolymers gel. 2409... [Pg.1857]

Clinical Analysis Clinical, pharmaceutical, and forensic labs make frequent use of gas chromatography for the analysis of drugs. Because the sample s matrix is often incompatible with the GC column, analytes generally must be isolated by extraction. Figure 12.25b shows how gas chromatography can be used in monitoring blood alcohol levels. [Pg.572]

Specifications and Analytical Methods. Vinyl ethers are usually specified as 98% minimum purity, as determined by gas chromatography. The principal impurities are the parent alcohols, limited to 1.0% maximum for methyl vinyl ether and 0.5% maximum for ethyl vinyl ether. Water (by Kad-Fischer titration) ranges from 0.1% maximum for methyl vinyl ether to 0.5% maximum for ethyl vinyl ether. Acetaldehyde ranges from 0.1% maximum in ethyl vinyl ether to 0.5% maximum in butyl vinyl ether. [Pg.116]

RO—CF=CF2, are obtained by reaction with sodium salts of alcohols (26). An osone—TFE reaction is accompanied by chemiluminescence (27). Dimerization at 600°C gives perfluorocyclobutane, C Fg further heating gives hexafluoropropylene, CF2=CFCF2, and eventually perfluoroisobutylene, CF2=C(CF2)2 (28). Purity is deterrnined by both gas—Hquid and gas—soHd chromatography the in spectmm is complex and therefore of no value. [Pg.349]

Blood and urine are most often analyzed for alcohol by headspace gas chromatography (qv) using an internal standard, eg, 1-propanol. Assays are straightforward and lend themselves to automation (see Automated instrumentation). Urine samples are collected as a voided specimen, ie, subjects must void their bladders, wait about 20 minutes, and then provide the urine sample. Voided urine samples provide the most accurate deterrnination of blood alcohol concentrations. Voided urine alcohol concentrations are divided by a factor of 1.3 to determine the equivalent blood alcohol concentration. The 1.3 value is used because urine has approximately one-third more water in it than blood and, at equiUbrium, there is about one-third more alcohol in the urine as in the blood. [Pg.486]

High performance Hquid chromatography (hplc) may be used to determine nitroparaffins by utilizing a standard uv detector at 254 nm. This method is particularly appHcable to small amounts of nitroparaffins present, eg, in nitro alcohols (qv), which caimot be analyzed easily by gas chromatography. Suitable methods for monitoring and deterrnination of airborne nitromethane, nitroethane, and 2-nitropropane have been pubUshed by the National Institute of Occupational Safety and Health (NIOSH) (97). Ordinary sorbant tubes containing charcoal are unsatisfactory, because the nitroparaffins decompose on it unless the tubes are held in dry ice and analyzed as soon after collection as possible. [Pg.103]

Cyclic Peroxides. CycHc diperoxides (4) and triperoxides (5) are soHds and the low molecular weight compounds are shock-sensitive and explosive (151). The melting points of some characteristic compounds of this type are given in Table 5. They can be reduced to carbonyl compounds and alcohols with zinc and alkaH, zinc and acetic acid, aluminum amalgam, Grignard reagents, and warm acidified iodides (44,122). They are more difficult to analyze by titration with acidified iodides than the acycHc peroxides and have been sucessfuUy analyzed by gas chromatography (112). [Pg.116]

For the higher alkoxy groups, standard carbon and hydrogen analysis may be used, although careful sample preparation is required because of the ease of hydrolysis. Quantitative vapor-phase chromatography of alcohol Hberated during hydrolysis may also be used, but care must be taken in this case to ensure that hydrolysis is complete before the estimation is carried out. [Pg.28]

The amino group is readily dia2oti2ed in aqueous solution, and this reaction forms a basis for the assay of sulfas. Aldehydes also react to form anils, and the yellow product formed with 4-(dimethylamino)hen2a1dehyde can be used for detection in thiu-layer and paper chromatography. Chromatographic retention values have been deterrnined in a number of thiu layer systems, and have been used as an expression of the lipophilic character of sulfonamides (23). These values have corresponded well with Hansch lipophilic parameters determined in an isobutyl alcohol—water system. [Pg.466]

The successful separation of xanthate-related compounds by high performance Hquid chromatography (hplc) methods has been reported (91—93). The thin-layer chromatography procedure has been used to determine the nature of the alcohols in a xanthate mixture. A short mn of 3 cm at a development time of 25 min gives a complete separation of C —alkanol xanthates (94). [Pg.367]

With the exception of gasoHne grade /-butyl alcohol (GTBA), the butanols are generally marketed in bulk in the pure isomeric form. ASTM specifications (29) for n-, iso- and j -butyl alcohol are given in Table 3. Butanol specification purity is routinely obtained by gas chromatography (30). [Pg.358]

Polymerization-grade chloroprene is typically at least 99.5% pure, excluding inert solvents that may be present. It must be substantially free of peroxides, polymer [9010-98-4], and inhibitors. A low, controlled concentration of inhibitor is sometimes specified. It must also be free of impurities that are acidic or that will generate additional acidity during emulsion polymerization. Typical impurities are 1-chlorobutadiene [627-22-5] and traces of chlorobutenes (from dehydrochlorination of dichlorobutanes produced from butenes in butadiene [106-99-0]), 3,4-dichlorobutene [760-23-6], and dimers of both chloroprene and butadiene. Gas chromatography is used for analysis of volatile impurities. Dissolved polymer can be detected by turbidity after precipitation with alcohol or determined gravimetrically. Inhibitors and dimers can interfere with quantitative determination of polymer either by precipitation or evaporation if significant amounts are present. [Pg.39]

Homoallyl alcohol (3) Metalation of (E) butene (1 05 equiv) with n BuLI (t equiv) and KOtBu (1 equiv) in THF at SO C for 15 mm followed by treatment of (E)-crotyl potassum salt with B(OiPr)3 at 79°C gave after quenching with 1 N HCI and extraction with EtjO containing 1 equiv of diisopropyl tartarate. the crotyl boronate 2 A solution of decanall (156 mg 1 mmol) was added to a toluene solution of 2 (1 1 15 equiv) (0 2 M) at 78 C containing 4A molecular sieves (15-20 mg/L) After 3 h at -78°1 N NaOH was added, followed by extraction and chromatography to afford 208 mg of 3 (90%), anti syn 99 1... [Pg.177]

This ester is formed by standard procedures and is readily cleaved with Pd(Ph3P)4 in CH2CI2 to form trimethylsilyl esters that readily hydrolyze on treatment with water or alcohol or on chromatography on silica gel (73-98% yield). Amines can be protected using.the related carbamate. ... [Pg.248]


See other pages where Alcohol chromatography is mentioned: [Pg.108]    [Pg.108]    [Pg.159]    [Pg.282]    [Pg.321]    [Pg.564]    [Pg.616]    [Pg.54]    [Pg.69]    [Pg.70]    [Pg.443]    [Pg.444]    [Pg.327]    [Pg.221]    [Pg.384]    [Pg.285]    [Pg.113]    [Pg.157]    [Pg.159]    [Pg.51]    [Pg.357]    [Pg.122]    [Pg.360]    [Pg.425]    [Pg.401]    [Pg.214]    [Pg.350]    [Pg.164]    [Pg.52]    [Pg.63]    [Pg.63]    [Pg.63]    [Pg.65]    [Pg.66]   
See also in sourсe #XX -- [ Pg.841 ]

See also in sourсe #XX -- [ Pg.30 , Pg.37 ]

See also in sourсe #XX -- [ Pg.37 ]




SEARCH



Alcohols, polyhydric chromatography

Chromatography of alcohols

Simple paper chromatography where alcohol is used as a solvent to separate the colors in an ink

Sugar alcohols, paper chromatography

© 2024 chempedia.info