Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alcohol oxidation benzyl

Alkyl groups attached to aromatic rings are oxidized more readily than the ring in alkaline media. Complete oxidation to benzoic acids usually occurs with nonspecific oxidants such as KMnO, but activated tertiary carbon atoms can be oxidized to the corresponding alcohols (R. Stewart, 1965 D. Arndt, 1975). With mercury(ll) acetate, allyiic and benzylic oxidations are aJso possible. It is most widely used in the mild dehydrogenation of tertiary amines to give, enamines or heteroarenes (M. Shamma, 1970 H. Arzoumanian. 1971 A. Friedrich, 1975). [Pg.120]

Ruthenium tetroxide is a potent oxidant, however, and it readily attacks carbon-carbon double bonds.19 Primary alcohols are oxidized to carboxylic acids, methyl ethers give methyl esters, and benzyl ethers are oxidized to benzoate esters. [Pg.1069]

Generally, primary aliphatic alcohols are oxidized to their respective aldehydes, secondary aliphatic and aromatic alcohols to the corresponding ketones, and allyl and benzyl alcohols to their carboxylic acid or carboxylate ions. For instance, 2-propanol, acetaldehyde, and methyl-benzoate ions are oxidized quantitatively to acetone, acetate, and terephtalate ion respectively, while toluene is converted into benzoate ion with an 86% yield. Controlling the number of coulombs passed through the solution allows oxidation in good yield of benzyl alcohol to its aldehyde. For diols,502 some excellent selectivity has been reached by changing the experimental conditions such as pH, number of coulombs, and temperature. [Pg.499]

Izumi and Urabe [105] found first that POM compounds could be entrapped strongly on active carbons. The supported POMs catalyzed etherization of ferf-butanol and n-butanol, esterification of acetic acid with ethanol, alkylation of benzene, and dehydration of 2-propanol [105], In 1991, Neumann and Levin [108] reported the oxidation of benzylic alcohols and amines catalyzed by the neutral salt of Na5[PV2Mo10O40] impregnated on active carbon. Benzyl alcohols were oxidized efficiently to the corresponding benzaldehydes without overoxidation ... [Pg.475]

ALDEHYDES FROM PRIMARY ALCOHOLS BY OXIDATION WITH CHROMIUM TRIOXIDE 1-HEPTANAL, 52, 5 ALDEHYDES FROM sym-TRITHIANE n-PENTADECANAL, 51, 39 Aldehydes, acetylenic, 54, 45 Aldehydes, aromatic, 54, 45 Aldehydes, benzyl, 54, 45 Aldehydes, olefinic, 54, 45... [Pg.54]

Ferrate salts have been used under phase-transfer catalytic conditions for the oxidation of alcohols. Selective oxidation of allylic and benzylic alcohols to the corresponding aldehydes occurs under mild conditions [4],... [Pg.441]

Adogen has been shown to be an excellent phase-transfer catalyst for the per-carbonate oxidation of alcohols to the corresponding carbonyl compounds [1]. Generally, unsaturated alcohols are oxidized more readily than the saturated alcohols. The reaction is more effective when a catalytic amount of potassium dichromate is also added to the reaction mixture [ 1 ] comparable results have been obtained by the addition of catalytic amounts of pyridinium dichromate [2], The course of the corresponding oxidation of a-substituted benzylic alcohols is controlled by the nature of the a-substituent and the organic solvent. In addition to the expected ketones, cleavage of the a-substituent can occur with the formation of benzaldehyde, benzoic acid and benzoate esters. The cleavage products predominate when acetonitrile is used as the solvent [3]. [Pg.443]

Benzene-l,4-diols are oxidized to quinones by benzyltrimethylammonium tribromide under mild conditions in almost quantitative yields [6]. With an excess of the tribromide further reaction produces the 2-bromo-l, 4-quinones. This oxidation is in contrast to the analogous reaction of phenols, which produces bromophenols (see Section 2.3). Hindered 4-methyl-phenols are oxidized to the corresponding benzyl alcohols, benzaldehydes, bromomethyl derivatives and 4-bromo-4-methylcyclo-hexa-2,5-dien-l-ones [7]. Benzylic alcohols are oxidized under neutral or basic conditions to yield the corresponding aldehydes (>70%) oxidation with an excess of the reagent produces the benzoic acids (>90%) [8],... [Pg.468]

The conversion of primary alcohols to aldehydes was achieved by using a biphasic system consisting of water and a nonpolar organic solvent such as petroleum ether. Under these conditions, benzylic and allylic alcohols were oxidized with high selectivity to the aldehydes (for example, (16) to (17) in Scheme 4), while aliphatic alcohols were converted to aldehydes with poor selectivity [17]. [Pg.176]

Potential-selective cleavage is a powerful method for potential-selective deprotection. Benzyl ethers can be cleaved to benzaldehyde and alcohol via oxidation of the benzyl group to a radical cation (Fig. 30) [148]. With the radical cation of... [Pg.416]

Chemical/Physical. Products identified from the reaction of toluene with nitric oxide and OH radicals include benzaldehyde, benzyl alcohol, 3-nitrotoluene, p-methylbenzoquinone, and o, m, and p-cresol (Kenley et ah, 1978). Gaseous toluene reacted with nitrate radicals in purified air forming the following products benzaldehyde, benzyl alcohol, benzyl nitrate, and 2-, 3-, and 4-nitro-toluene (Chiodini et al., 1993). Under atmospheric conditions, the gas-phase reaction with OH radicals and nitrogen oxides resulted in the formation of benzaldehyde, benzyl nitrate, 3-nitrotoluene, and o-, m-, and p-cresol (Finlayson-Pitts and Pitts, 1986 Atkinson, 1990). [Pg.1059]

Primary benzylic alcohols are oxidized to aldehydes in good yields without overoxidation (entry 1) lowering the pH from 5 to 3.5 increases the conversion, for reasons not fnUy understood yet (entry 2) . The aminoxyl radical is an electrophilic species" ... [Pg.741]

Sheldon and coworkers have developed chromium-substituted molecular sieves (CrAPO-5) as recyclable solid catalysts for several selective oxidations, among them also the allylic" and benzylic ° " ° " ° oxidations using TBHP or O2 as the terminal oxidants (equation 63), which yielded the corresponding benzylic ketones in moderate yield (conv. 13-70%) and moderate to good selectivity (41%, 65-97%). The benzylic alcohols were formed as side products. Allylic oxidation also proceeded with good conversions, while selectivities were lower and both possible products, the allylic ketone (31-77% selectivity) and the allylic alcohol (0-47% selectivity), were formed. Chromium sUicalite showed activity for selective benzylic oxidation in the presence of TBHP as well as giving mainly the allylic ketone (2-cyclohexen-l-one with 74% selectivity) and the allylic alcohol as minor product (2-cyclohexen-l-ol with 26% selectivity) -. ... [Pg.514]

Primary and secondary alcohols were selectively oxidized to the corresponding aldehydes and ketones, respectively, by using Oxone in the presence of a catalytic amount of TEMPO (2,2,6,6-tetramethyl-l-oxypiperidinyl). This reaction has been proved to be a highly selective and efficient oxidation reaction, where a catalytic amount of TEMPO plays an important role. Thus TBDMS protected benzyl alcohols were oxidized selectively to benzaldehydes in 81% yield, without affecting the TBDMS moiety. [Pg.1023]

Allylic and benzylic alcohols were oxidized to aldehydes or ketones with BnPhsPHSOs in refluxing CHsCN. The yield increased in the presence of bismuth chloride in a catalytic amount. Selective oxidation of various alcohols under solvent free conditions was also reported Interestingly, benzyl alcohols were oxidized selectively to benzaldehydes in very high yield (95-100%) when reacted with BnPhsPHSOs (1.2 eq.) and AICI3 (1 eq.) in the presence of an equimolar amount of 2-phenethyl alcohol, diphenyl carbinol or methyl phenyl sulfide (equation 72). [Pg.1031]

Abstract The purpose of this chapter is to present a survey of the organometallic chemistry and catalysis of rhodium and iridium related to the oxidation of organic substrates that has been developed over the last 5 years, placing special emphasis on reactions or processes involving environmentally friendly oxidants. Iridium-based catalysts appear to be promising candidates for the oxidation of alcohols to aldehydes/ketones as products or as intermediates for heterocyclic compounds or domino reactions. Rhodium complexes seem to be more appropriate for the oxygenation of alkenes. In addition to catalytic allylic and benzylic oxidation of alkenes, recent advances in vinylic oxygenations have been focused on stoichiometric reactions. This review offers an overview of these reactions... [Pg.217]


See other pages where Alcohol oxidation benzyl is mentioned: [Pg.232]    [Pg.10]    [Pg.365]    [Pg.157]    [Pg.135]    [Pg.967]    [Pg.94]    [Pg.151]    [Pg.40]    [Pg.489]    [Pg.181]    [Pg.188]    [Pg.462]    [Pg.474]    [Pg.74]    [Pg.210]    [Pg.241]    [Pg.1467]    [Pg.108]    [Pg.109]    [Pg.788]    [Pg.826]    [Pg.135]    [Pg.34]    [Pg.456]    [Pg.95]    [Pg.64]    [Pg.496]    [Pg.496]    [Pg.500]    [Pg.501]    [Pg.1106]    [Pg.1107]    [Pg.224]   
See also in sourсe #XX -- [ Pg.90 , Pg.93 ]




SEARCH



Active Sites in Aerobic Oxidation of Benzyl Alcohol

Aerobic oxidation of benzyl alcohol

Aerobic oxidation, benzyl alcohol

Alcohol benzylation

Alcohols benzyl alcohol

Alcohols benzylic, oxidation by manganese dioxide

Benzyl alcohol

Benzyl alcohol anodic oxidation

Benzyl alcohol, from oxidation

Benzyl alcohols oxidation potentials

Benzyl alcohols oxidative cleavage

Benzyl alcohols, oxidation Benzylamines

Benzyl alcohols, oxidation addition

Benzyl oxidation

Benzyl oxide

Benzylation benzyl alcohol

Benzylic alcohols

Benzylic alcohols oxidation

Benzylic alcohols oxidation

Benzylic alcohols, aerobic oxidation

Benzylic alcohols, oxidation ionic liquid

Benzylic alcohols, selective oxidation

Oxidation benzyl alcohol to benzaldehyde

Oxidation benzylic

Oxidation manganese dioxide, benzyl alcohol

Oxidation of benzyl alcohol

Oxidation of benzylic alcohols

© 2024 chempedia.info