Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ethers trimethylsilyl, alcohol

Notes, fa) Rate of metallation with t-BuLi varies from case to case. Lithiation of ally] alcohol trimethylsilyl ether proceeds to completion in 2 h at -78 °C, whereas the corresponding methallyl derivative requires 3.5 h at -33°C. [Pg.52]

Allenyl Silyl enol ethers, 86 Allyl alcohol trimethylsilyl ether, 84 Allyl carbonates, 114-15 9 Allyl-ay 2 octalone, 34-5 2-Allyl-2 methylcyclohexanone, 106 (Allyldimethylsilyl)methyl chloride, 58, 59 (AUyldimethylsilyl)methylmagnesium chloride, 59... [Pg.167]

Figure 11.7 Pyrogram of a beeswax sample obtained with a microfurnace pyrolyser at 600°C, in the presence of HMDS. TIC total ion current m/z 117 profile of carboxylic acid trimethylsilyl esters, showing a maximum with palmitic acid m/z 57 profile of hydrocarbons, showing a maximum with heneicosane m/z 103 profile of alcohol trimethylsilyl ethers, showing a max imum with docosanol. For the identification of all peaks, see Bonaduce and Colombini [70]... Figure 11.7 Pyrogram of a beeswax sample obtained with a microfurnace pyrolyser at 600°C, in the presence of HMDS. TIC total ion current m/z 117 profile of carboxylic acid trimethylsilyl esters, showing a maximum with palmitic acid m/z 57 profile of hydrocarbons, showing a maximum with heneicosane m/z 103 profile of alcohol trimethylsilyl ethers, showing a max imum with docosanol. For the identification of all peaks, see Bonaduce and Colombini [70]...
Protection of Alcohols. Trimethylsilyl ethers, readily prepared from alcohols by treatment with a variety of silylating agents have found considerable use for the protection of alcohols. They are thermally stable and reasonably stable to many organometallic reagents and they are easily cleaved by hydrolysis in acid or base or by treatment with fluoride ion. t, Butyl dimethylsilyl ethers have considerably greater hydrolytic stability and are easier to work with than trimethylsilyl ethers. They are prepared from alcohols by treatment with t. butyl dimethylsilyl chloride. [Pg.201]

Oxidation of alcohols. Trimethylsilyl ethers of secondary alcohols are oxidized in CH2CI2 to ketones in 95-1007o yield by trityl tetrafluoroborate. Oxidation of ethers of primary alcohols is too slow to be useful. Consequently selective oxidation of ethers of secondary alcohols is possible. Oxidation of bissilyl ethers is not clean, but use of bistrityl ethers or bis-r-butyl ethers is a useful method. The latter ethers are useful for selective oxidation of some 1,3-diols, because only... [Pg.211]

Benzyl trichloracetimidate (48) is a new reagent for acid-catalysed benzylation of alcohols in the presence of trifluoromethanesulphonic acid, and benzyl p-toluenesulphonate-potassium carbonate has been recommended as abenzylat-ing system for phenols, especially in cases where benzyl chloride-potassium carbonate gives C-alkylated impurities.Facile removal of benzyl ether protecting groups has been achieved by catalytic transfer hydrogenation with Pd(OH)2 on carbon and cyclohexene as hydrogen-donor. A new procedure for O-tritylation by treatment of an alcohol trimethylsilyl ether with trityl trimethylsilyl ether is shown in equation (6). The synthesis and characterization has been completed of 4-dimethylamino-N-triphenylmethylpyridinium chloride (49)," a postulated intermediate in the formation of trityl ethers from alcohols... [Pg.175]

Silylation of Alcohols. Trimethylsilyl ethers can be prepared in good yield by reacting alcohols with trimethylsilyldiethyl-... [Pg.600]

The most stable protected alcohol derivatives are the methyl ethers. These are often employed in carbohydrate chemistry and can be made with dimethyl sulfate in the presence of aqueous sodium or barium hydroxides in DMF or DMSO. Simple ethers may be cleaved by treatment with BCI3 or BBr, but generally methyl ethers are too stable to be used for routine protection of alcohols. They are more useful as volatile derivatives in gas-chromatographic and mass-spectrometric analyses. So the most labile (trimethylsilyl ether) and the most stable (methyl ether) alcohol derivatives are useful in analysis, but in synthesis they can be used only in exceptional cases. In synthesis, easily accessible intermediates of medium stability are most helpful. [Pg.161]

Polarimetric analysis of sorbitol and mannitol in the presence of each other and of sugars is possible because of their enhanced optical rotation when molybdate complexes are formed and the higher rotation of the mannitol molybdate complex under conditions of low acidity (194). The concentration of a pure solution of sorbitol may be determined by means of the refractometer (195). Mass spectra of trimethylsilyl ethers of sugar alcohols provide unambiguous identification of tetritols, pentitols, and hexitols and permit determination of molecular weight (196). [Pg.52]

Acetals are useful because they can act as protecting groups for aldehydes and ketones in the same way that trimethylsilyl ethers act as protecting groups for alcohols (Section 17.8). As we saw previously, it sometimes happens that one functional group interferes with intended chemistry elsewhere... [Pg.717]

Cleavage of trimethylsilyl ethers to the parent alcohols occurs quite readily on exposure to nucleophiles such as methanol, especially in the presence of... [Pg.57]

Alkyl esters are efficiently dealkylated to trimethylsilyl esters with high concentrations of iodotrimethylsilane either in chloroform or sulfolane solutions at 25-80° or without solvent at 100-110°.Hydrolysis of the trimethylsilyl esters serves to release the carboxylic acid. Amines may be recovered from O-methyl, O-ethyl, and O-benzyl carbamates after reaction with iodotrimethylsilane in chloroform or sulfolane at 50—60° and subsequent methanolysis. The conversion of dimethyl, diethyl, and ethylene acetals and ketals to the parent aldehydes and ketones under aprotic conditions has been accomplished with this reagent. The reactions of alcohols (or the corresponding trimethylsilyl ethers) and aldehydes with iodotrimethylsilane give alkyl iodides and a-iodosilyl ethers,respectively. lodomethyl methyl ether is obtained from cleavage of dimethoxymethane with iodotrimethylsilane. [Pg.21]

The use of iodotrimethylsilane for this purpose provides an effective alternative to known methods. Thus the reaction of primary and secondary methyl ethers with iodotrimethylsilane in chloroform or acetonitrile at 25—60° for 2—64 hours affords the corresponding trimethylsilyl ethers in high yield. The alcohols may be liberated from the trimethylsilyl ethers by methanolysis. The mechanism of the ether cleavage is presumed to involve initial formation of a trimethylsilyl oxonium ion which is converted to the silyl ether by nucleophilic attack of iodide at the methyl group. tert-Butyl, trityl, and benzyl ethers of primary and secondary alcohols are rapidly converted to trimethylsilyl ethers by the action of iodotrimethylsilane, probably via heterolysis of silyl oxonium ion intermediates. The cleavage of aryl methyl ethers to aryl trimethylsilyl ethers may also be effected more slowly by reaction with iodotrimethylsilane at 25—50° in chloroform or sulfolane for 12-125 hours, with iodotrimethylsilane at 100—110° in the absence of solvent, " and with iodotrimethylsilane generated in situ from iodine and trimcthylphenylsilane at 100°. ... [Pg.157]

Polar functional groups such as alcohols or phenols 11 or trimethylsilanol 4 are transformed by monofunctional silylating reagents Me3SiX 12 into their hpophilic and often volatile trimethylsilyl ethers 13 whereas water is converted into persilyl-ated water (=Me3SiOSiMe3, hexamethyldisiloxane, HMDSO, 7, b.p. 100 °C). The persilylation of phenols and, in particular, catechol (or hydroquinone) systems (Scheme 2.1) protects them efficiently against air oxidation even at temperatures of up to 180 °C. (cf, e.g., the silylation-amination of purine nucleosides with dopamine hydrochloride in Section 4.2.4)... [Pg.7]

Noyori and coworkers found that tetrafluorosilane or trimethylsilyl tri-flate catalyzes the condensation of appropriately protected glycopyranosyl fluorides with trimethylsilyl ethers or alcohols. The strong affinity of silicon for fluorine was considered to be the driving force for this reaction. In the case of Sip4, attack of a nucleophile on the glycosyl cation-SiFj ion-pair intermediate was anticipated. Thus, condensation of 2,3,4,6-tetra-O-benzyl-a- and - -D-glucopyranosyl fluorides (47a and 47fi) with methyl... [Pg.107]

Although some methods for reductive etherifications of carbonyl compounds have been reported [152-162], the iron-catalyzed version possesses several advantages (1) fairly short reaction times are needed, (2) not only trimethylsilyl ether but also triethylsilyl and butyldimethylsilyl ethers and alcohols are adaptable, and (3) a broad substrate scope. [Pg.61]

The combination Et3SiH/(C6F5)3B reduces acid chlorides to methyl groups (Eq. 138).281,282 If a smaller amount of triethylsilane is used, the same combination reduces aryl acid chlorides to the trimethylsilyl ethers of the benzyl alcohols.281,282... [Pg.53]

The cyclization of y -hydroxy ketones is useful for the formation of pyrans,306,403 both directly and via rearrangement, as illustrated in Eq. 231.153 As with their acyclic counterparts, these cyclizations also occur with the silyl ethers of the hydroxy ketones where Et3SiH/BiBr3 is used with the TBS and TES ethers.342,404 A methyl thiomethyl ether is also capable of undergoing the reductive cyclization 405 In like manner, 1,4-diols and e-hydroxy ketones provide oxepanes, with I ds Si H or PhMe2SiH/TMSOTf being especially effective (Eqs. 232 and 233).336,406 The trimethylsilyl ether of the alcohol also provides the oxepane.306... [Pg.81]

The cyanation reactions with (19) (extremely toxic and requires essentially nonacidic reaction conditions) can also he carried out with unprotected aldehydes in good yields but with higher charge consumption (88-97%, 0.15-0.45 F). For ketones, the products are isolated as trimethylsilyl ethers, whereas for aldehydes the sdyl ethers are hydrolyzed to alcohols [33]. [Pg.462]

An economical, practical, and environmentally acceptable procedure was elaborated for oxidative deprotection of trimethylsilyl ethers to their corresponding carbonyl compounds. The reaction proceeded in a solventless system, within a short period of time, and yields were good. On irradiation in a conventional microwave for 30 s, trimethylsilyl ether of benzyl alcohol in the presence of mont-morilonite KIO and finely grounded Fe(N03)3 9H2O gave rise to benzaldehyde in 95% yield. The applicability of this method was tested with several aromatic, alicyclic, and aliphatic trimethylsilyl ethers. Duration did not exceed 1 min, and yields were not lower than 80% (Mojtahedi et al. 1999). [Pg.384]

In the majority of pentatetraenylidene complexes prepared or generated so far, the pentatetraenylidene ligand is derived from suitable C5 precursors. Usually penta-1,3-diynyl derivatives like the alcohol HC = C—C = C—CPh20H, its trimethylsilyl ether, or the 5,5,5-tris(dimethylamino)-substituted penta-l,3-diyne are employed. [Pg.108]

The formation of other mono- [27-29] or even bis[alkoxy(alkenyl)allenylidene[ ruthenium complexes [28, 30] from the corresponding ruthenium chlorides and 5,5 -diphenyl-penta-1,3 -diynyl alcohol or trimethylsilyl ether in the presence of methanol (Scheme 3.13) and of the allenylidene complex 18 in the absence of methanol (Scheme 3.13) [30, 31] was also suggested to proceed via pentatetraenylidene intermediates. Neither one of these pentatetraenylidene complexes could be isolated or spectroscopically detected although their formation as an intermediate was very likely. [Pg.109]

The present method offers a more efficient and convenient two-step route to the parent a,B-unsaturated acylsilane derivative. The first step in the procedure involves the conversion of allyl alcohol to allyl trimethylsilyl ether, followed by metalation (in the same flask) with tert-butyllithiura at -75°C. Protonation of the resulting mixture of interconverting lithium derivatives (2 and 3) with aqueous ammonium chloride solution furnishes (1-hydroxy-2-propenyl)trimethylsilane (4), which is smoothly transformed to (1-oxo-2-propenyl)trimethylsilane by Swern oxidation. The acylsilane is obtained in 53-68% overall yield from allyl alcohol in this fashion. [Pg.10]

The hydroperoxides obtained on thermal oxidation of cholesteryl acetate (191e) can be selectively separated by SPE and elution with a polar solvent. After reduction to the corresponding alcohols by NaBH4 and further derivatization to the trimethylsilyl ether, the products can be subjected to GLC with ion-trap MS detection. It can be thus demonstrated with the aid of standards that under the oxidation conditions (160 °C for 90 min) only the 7-position is attacked, leading to the la- and 7/3-hydroperoxy derivatives, while the plausible 4-position remains unscathed . Treatment of erythrocite ghosts with t-BuOOH causes a manyfold content increase of 5-hydroxyeicosatetraenoic acid (5-HETE), 5-hydroperoxyeicosatetraenoic acid (5-HPETE) and 5-oxoeicosatetraenoic acid (5-oxo-ETE) residues of phospholipids. These acids can be separated by HPLC, identified and quantitized by tandem MS . ... [Pg.690]


See other pages where Ethers trimethylsilyl, alcohol is mentioned: [Pg.399]    [Pg.16]    [Pg.54]    [Pg.399]    [Pg.16]    [Pg.54]    [Pg.159]    [Pg.274]    [Pg.699]    [Pg.769]    [Pg.315]    [Pg.54]    [Pg.12]    [Pg.942]    [Pg.567]    [Pg.204]    [Pg.29]    [Pg.205]    [Pg.419]    [Pg.81]    [Pg.76]    [Pg.384]   
See also in sourсe #XX -- [ Pg.626 , Pg.627 ]

See also in sourсe #XX -- [ Pg.626 , Pg.627 ]




SEARCH



Alcohols ethers

Alcohols trimethylsilyl

Allyl alcohol trimethylsilyl ether

Ethers, trimethylsilyl alcohol protection

Fatty alcohols trimethylsilyl ethers

Trimethylsilyl ether, cleavage from alcohols

Trimethylsilyl ethers

Trimethylsilyl ethers, protecting alcohols

© 2024 chempedia.info