Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alcohol reductases

Figure 1.9 Examples of functionally important intrinsic metal atoms in proteins, (a) The di-iron center of the enzyme ribonucleotide reductase. Two iron atoms form a redox center that produces a free radical in a nearby tyrosine side chain. The iron atoms are bridged by a glutamic acid residue and a negatively charged oxygen atom called a p-oxo bridge. The coordination of the iron atoms is completed by histidine, aspartic acid, and glutamic acid side chains as well as water molecules, (b) The catalytically active zinc atom in the enzyme alcohol dehydrogenase. The zinc atom is coordinated to the protein by one histidine and two cysteine side chains. During catalysis zinc binds an alcohol molecule in a suitable position for hydride transfer to the coenzyme moiety, a nicotinamide, [(a) Adapted from P. Nordlund et al., Nature 345 593-598, 1990.)... Figure 1.9 Examples of functionally important intrinsic metal atoms in proteins, (a) The di-iron center of the enzyme ribonucleotide reductase. Two iron atoms form a redox center that produces a free radical in a nearby tyrosine side chain. The iron atoms are bridged by a glutamic acid residue and a negatively charged oxygen atom called a p-oxo bridge. The coordination of the iron atoms is completed by histidine, aspartic acid, and glutamic acid side chains as well as water molecules, (b) The catalytically active zinc atom in the enzyme alcohol dehydrogenase. The zinc atom is coordinated to the protein by one histidine and two cysteine side chains. During catalysis zinc binds an alcohol molecule in a suitable position for hydride transfer to the coenzyme moiety, a nicotinamide, [(a) Adapted from P. Nordlund et al., Nature 345 593-598, 1990.)...
FIGURE 25.32 A reaction mechanism for HMGCoA reductase. Two successive NADPH-dependent reductions convert the thioester, HMGCoA, to a primary alcohol. [Pg.833]

Steps 6-8 of Figure 29.5 Reduction and Dehydration The ketone carbonyl group in acetoacetyl ACP is next reduced to the alcohol /S-hydroxybutyry] ACP by yS-keto thioester reductase and NADPH, a reducing coenzyme closely related to NADH. R Stereochemistry results at the newly formed chirality center in the /3-hydroxy thioester product. (Note that the systematic name of a butyryl group is biitanoyl.)... [Pg.1142]

Category X) and lactation. The HMG-CoA reductase inhibitors are used cautiously in patients with a history of alcoholism, acute infection, hypotension, trauma, endocrine disorders, visual disturbances, and myopathy. [Pg.412]

A representative set of a- and -keto esters was also tested as substrates (total 11) for each purified fusion protein (Figure 8.13b,c) [9bj. The stereoselectivities of -keto ester reductions depended both on the identity of the enzyme and the substrate stmcture, and some reductases yielded both l- and o-alcohols with high stereoselectivities. While a-keto esters were generally reduced with lower enantioselec-tivities, it was possible to identify pairs of yeast reductases that delivered both alcohol antipodes in optically pure form. These results demonstrate the power of genomic fusion protein libraries to identify appropriate biocatalysts rapidly and expedite process development. [Pg.201]

For reduction of acetylenic ketones, two oxidoreductases were used [25]. Lactobacillus brevis alcohol dehydrogenase (LBADH) gave the (R)-alcohols and Candida parapsilosis carbonyl reductase (CPCR) afforded the (S)-isomer, both in good yield and excellent enantioselectivity. By changing the steric demand of the substituents, the enantiomeric excess values can be adjusted and even the configurations of the products can be altered (Figure 8.34). [Pg.219]

Reduction of carbon-carbon double bond Microalgae easily reduce carbon-carbon double bonds in enone. Usually, the reduction of carbonyl group and carbon-carbon double bond proceeds concomitantly to afford the mixture of corresponding saturated ketone, saturated alcohol, and unsaturated alcohol because a whole cell of microalgae has two types of reductases to reduce carbonyl and olefinic groups. The use of isolated reductase, which reduces carbon-carbon double bond chemoselectively, can produce saturated ketones selectively. [Pg.55]

This pathway is supported by the demonstration of benzyl alcohol dehydrogenase, benzaldehyde dehydrogenase, benzoyl-CoA ligase, and benzoyl-CoA reductase activities in cell extracts (Biegert and Fuchs 1995). The benzyl alcohol dehydrogenase from benzyl alcohol-grown cells was similar in many of its properties to those from the aerobic bacteria Acinetobacter calcoaceticus and Pseudomonas putida (Biegert et al. 1995). [Pg.390]

Thiols are also important protection against lipid peroxidation. Glutathione (7-Glu-Cys-Gly) is used by several glutathione-dependent enzymes such as free-radical reductase (converts vitamin E radical to vitamin E), glutathione peroxidase (reduces hydrogen peroxide and lipid hydroperoxides to water and to the lipid alcohol, respectively), and others. In addition, the thiol group of many proteins is essential for function. Oxidation of the thiol of calcium ATPases impairs function and leads to increased intracellular calcium. Thiol derivatives such as the ovothiols (l-methyl-4-mercaptohistidines) (Shapiro, 1991) have been explored as therapeutics. [Pg.268]

In a study aim to develop biocatalytic process for the synthesis of Kaneka alcohol, apotential intermediate for the synthesis of HMG-CoA reductase inhibitors, cell suspensions of Acine-tobacter sp. SC 13 874 was found to reduce diketo ethyl ester to give the desired syn-(AR,5S)-dihydroxy ester with an ee of 99% and a de of 63% (Figure 7.4). When the tert-butyl ester was used as the starting material, a mixture of mono- and di-hydroxy esters was obtained with the dihydroxy ester showing an ee of 87% and de of 51% for the desired, sy -(3/t,5,Sr)-dihydroxy ester [16]. Three different ketoreductases were purified from this strain. Reductase I only catalyzes the reduction of diketo ester to its monohydroxy products, whereas reductase II catalyzes the formation of dihydroxy products from monohydroxy substrates. A third reductase (III) catalyzes the reduction of diketo ester to, vv -(3/t,55)-dihydroxy ester. [Pg.138]

Similarly, whole-cell Lactobacillus kefir DSM 20587, which possesses two alcohol dehydrogenases for both asymmetric reduction steps, was applied in the reduction of tert-butyl 6-chloro-3,5-dioxohexanoate for asymmetric synthesis of ft rf-butyl-(31 ,5S)-6-chloro-dihydroxyhexanoate (Figure 7.5), a chiral building block for the HMG-CoA reductase inhibitor [ 17]. A final product concentration of 120 him and a specific product capacity of 2.4 mmol per gram dry cell were achieved in an optimized fed-batch process. Ado 99% was obtained for (3R,5S)- and (3.S, 55)-te/ f-butyl-6-chloro-dihydroxyhexanoate with the space-time yield being 4.7 mmolL-1 h-1. [Pg.139]

Two interesting yeast carbonyl reductases, one from Candida magnoliae (CMCR) [33,54] and the other from Sporobolomyces salmonicolor (SSCR) [55], were found to catalyze the reduction of ethyl 4-chloro-3-oxobutanoate to give ethyl (5)-4-chloro-3-hydroxybutanoate, a useful chiral building block. In an effort to search for carbonyl reductases with anti-Prelog enantioselectivity, the activity and enantioselectivity of CMCR and SSCR have been evaluated toward the reduction of various ketones, including a- and /3-ketoesters, and their application potential in the synthesis of pharmaceutically important chiral alcohol intermediates have been explored [56-58]. [Pg.147]

The carbonyl reductase from Candida magnoliae catalyzed the enantioselective reduction of a diversity of ketones, including aliphatic and aromatic ketones and a- and /3-ketoesters (Figure 7.17), to anti-Prelog configurated alcohols in excellent optical purity (99% ee or higher) [56]. [Pg.147]

The usefulness of the carbonyl reductase from Candida magnoliae as an enzyme catalyst in the synthesis of chiral alcohol intermediates has been demonstrated by carrying out the reduction of several ketones on a preparative scale [56]. The isolated yields and enantiomeric excess of the product alcohols are summarized in Table 7.1, from which it can be seen that these chiral alcohols were obtained in essentially optically pure forms in excellent yields. These chiral alcohols are important intermediates in the synthesis of pharmaceuticals and agrichemicals. For example, optically active 2-hydroxy-3-methylbutyrate is an important chiral synthon... [Pg.147]


See other pages where Alcohol reductases is mentioned: [Pg.120]    [Pg.8]    [Pg.121]    [Pg.35]    [Pg.116]    [Pg.227]    [Pg.120]    [Pg.8]    [Pg.121]    [Pg.35]    [Pg.116]    [Pg.227]    [Pg.153]    [Pg.125]    [Pg.347]    [Pg.120]    [Pg.654]    [Pg.825]    [Pg.101]    [Pg.203]    [Pg.203]    [Pg.204]    [Pg.224]    [Pg.247]    [Pg.108]    [Pg.218]    [Pg.241]    [Pg.874]    [Pg.756]    [Pg.140]    [Pg.144]    [Pg.145]    [Pg.145]    [Pg.146]    [Pg.147]    [Pg.149]    [Pg.150]    [Pg.150]    [Pg.150]    [Pg.152]    [Pg.155]   
See also in sourсe #XX -- [ Pg.8 ]




SEARCH



© 2024 chempedia.info