Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Affinity separation parameters

Much of tills chapter concerns ET reactions in solution. However, gas phase ET processes are well known too. See figure C3.2.1. The Tiarjioon mechanism by which halogens oxidize alkali metals is fundamentally an electron transfer reaction [2]. One might guess, from tliis simple reaction, some of tlie stmctural parameters tliat control ET rates relative electron affinities of reactants, reactant separation distance, bond lengtli changes upon oxidation/reduction, vibrational frequencies, etc. [Pg.2972]

Chromatographic separations rely on fundamental differences in the affinity of the components of a mixture for the phases of a chromatographic system. Thus chromatographic parameters contain information on the fundamental quantities describing these interactions and these parameters may be used to deduce stabiUty constants, vapor pressures, and other thermodynamic data appropriate to the processes occurring in the chromatograph. [Pg.104]

The reaction kinetics approximation is mechanistically correct for systems where the reaction step at pore surfaces or other fluid-solid interfaces is controlling. This may occur in the case of chemisorption on porous catalysts and in affinity adsorbents that involve veiy slow binding steps. In these cases, the mass-transfer parameter k is replaced by a second-order reaction rate constant k. The driving force is written for a constant separation fac tor isotherm (column 4 in Table 16-12). When diffusion steps control the process, it is still possible to describe the system hy its apparent second-order kinetic behavior, since it usually provides a good approximation to a more complex exact form for single transition systems (see Fixed Bed Transitions ). [Pg.1514]

Further, for studying the role of pH and salt concentrations on bulk-electrostatic and non-bulk electrostatic contributions the same approach was made to experiments on the influence of the alcohols mentioned above on the oxygen affinity at various KC1 concentrations and pH-values 144,146). The results obtained indicate that at a low alcohol concentration the bulk-electrostatic contributions are dominant and that with increasing size of the alkyl group, alcohol and KC1 concentration, the nonbulk electrostatic, hydrophobic contributions increase. Recent results of kinetic measurements of 02 release show that cosolvents such as alcohols and formamide influence mainly the allosteric parameter L, i.e. -the equilibrium between T and R conformation and that the separation of the alcohol effects into bulk-electrostatic and hydrophobic (non-bulk electrostatic) contributions is justified. [Pg.27]

In order, for the two liquids to separate into two phases, they must be very weakly soluble in each other. When exposed to each other by mixing or shaking in a separatory funnel, they may not interpenetrate each other s realm to any extent. At the molecular level, we infer that the two species of molecules have no significant affinity for each other, rather they are predominantly attracted to other molecules with the same structure. To model this aversion, the joining and breaking rules must encode this behavior. The cells of liquids X and Y must respond to rules typified by those shown in the parameter setup tables below. With these rules we anticipate that liquid X will favor associating with other X molecules, while molecule Y will be found predominantly among other Y molecules. [Pg.74]

In these studies, choose different sets of affinities (SiB) and (S2B), and run these with the same parameters for the other ingredient encounters, as in Example 6.5. The cellular automata modeling of chromatographic separation produces a very realistic picture of the events taking place. It provides a visual and a tabular representation of the influence of variables on the process. The student is challenged to pursue these models and to compare them with some of the mathematical descriptions possible from chromatography. [Pg.99]

In an attempt to separate the domains from the cores, we used limited degradation with several proteases. CBH I (65 kda) and CBH II (58 kda) under native conditions could only be cleaved successfully with papain (15). The cores (56 and 45 kda) and terminal peptides (11 and 13 kda) were isolated by affinity chromatography (15,16) and the scission points were determined unequivocally. The effect on the activity of these enzymes was quite remarkable (Fig. 7). The cores remained perfectly active towards soluble substrates such as those described above. They exhibited, however, a considerably decreased activity towards native (microcrystalline) cellulose. These effects could be attributed to the loss of the terminal peptides, which were recognized as binding domains, whose role is to raise the relative concentration of the intact enzymes on the cellulose surface. This aspect is discussed further below. The tertiary structures of the intact CBH I and its core in solution were examined by small angle X-ray scattering (SAXS) analysis (17,18). The molecular parameters derived for the core (Rj = 2.09 mm, Dmax = 6.5 nm) and for the intact CBH I (R = 4.27 nm, Dmax = 18 nm) indicated very different shapes for both enzymes. Models constructed on the basis of these SAXS measurements showed a tadpole structure for the intact enzyme and an isotropic ellipsoid for the core (Fig. 8). The extended, flexible tail part of the tadpole should thus be identified with the C-terminal peptide of CBH I. [Pg.580]

Capillary electrophoresis offers a set of important advantages that make it a premier technique for the investigation of enantioselective effects in the affinity interactions between chiral drugs and cyclodextrins. The most important advantage of CE is the inherently high separation efficiency offered by this technique. As already known, the most important contributors to peak resolution (R) are a separation selectivity (a) and an efficiency (N). A relationship between these parameters in CE is described by the following equation (2) ... [Pg.189]

For successful separation in affinity chromatography, the important parameter is that solute of interest should be bound firmly and specifically while leaving all other molecules. This requires that the support within the column contain an affinity ligand that is capable of forming a suitably strong complex with the solute of interest [8]. The other important property is that the, support material must be biologically and chemically inert to avoid... [Pg.63]

CCC is fhaf uses multiparfifioning of solufes between two liquid phases to separate them. The affinity of fhe solufes for fhe two liquid phases, called solute partitioning, will be the only physicochemical parameter responsible for solufe separafion by CCC. Since fhe CCC fechnique is nof yef well known in fhe scienfific community, it will be briefly described and ifs capabilities will be exposed why is it so interesting to work with a liquid stationary phase ... [Pg.212]

For purposes of illustration in what follows, we consider the cases of various specific biopolymer mixtures demonstrating the roles of different thermodynamic parameters in determining the tendency towards phase separation. The deciding role of a greater positive value of Ay is indicated for mixtures in which there is a small difference in thermodynamic affinities of the two biopolymers for the solvent, AA2 = A - Au. A pair... [Pg.238]

All the spectroscopic approaches applied for structural characterization of mixtures derive from methods originally developed for screening libraries for their biological activities. They include diffusion-ordered spectroscopy [15-18], relaxation-edited spectroscopy [19], isotope-filtered affinity NMR [20] and SAR-by-NMR [21]. These applications will be discussed in the last part of this chapter. As usually most of the components show very similar molecular weight, their spectroscopic parameters, such as relaxation rates or selfdiffusion coefficients, are not very different and application of these methodologies for chemical characterization is not straightforward. An exception is diffusion-edited spectroscopy, which can be a feasible way to analyze the structure of compounds within a mixture without the need of prior separation. This was the case for the analysis of a mixture of five esters (propyl acetate, butyl acetate, ethyl butyrate, isopropyl butyrate and butyl levulinate) [18]. By the combined use of diffusion-edited NMR and 2-D NMR methods such as Total Correlation Spectroscopy (TOCSY), it was possible to elucidate the structure of the components of this mixture. This strategy was called diffusion encoded spectroscopy DECODES. Another example of combination between diffusion-edited spectroscopy and traditional 2-D NMR experiment is the DOSY-NOESY experiment [22]. The use of these experiments have proven to be useful in the identification of compounds from small split and mix synthetic pools. [Pg.290]

Today the melt crystallization can be advantageously replaced by a more challenging separation method known as simulated moving bed (SMB) technology. The method exploits the differences in affinity of zeolitic adsorbents for p-xylene with respect to other A8 components. Despite the name, the adsorbent phase is stationary and only fluid phase is distributed in a cyclic manner by a multivalve system. Operation parameters are temperatures of 125 to 200 °C and pressures up to 15 bar. Lighter (toluene) or heavier solvents (p-diethylbenzene) may be used as a desorbent. The Parex process working on this principle today has many applications. [Pg.84]


See other pages where Affinity separation parameters is mentioned: [Pg.544]    [Pg.248]    [Pg.259]    [Pg.521]    [Pg.521]    [Pg.224]    [Pg.98]    [Pg.419]    [Pg.400]    [Pg.20]    [Pg.60]    [Pg.87]    [Pg.403]    [Pg.167]    [Pg.6]    [Pg.863]    [Pg.410]    [Pg.510]    [Pg.665]    [Pg.39]    [Pg.640]    [Pg.189]    [Pg.310]    [Pg.317]    [Pg.492]    [Pg.221]    [Pg.18]    [Pg.107]    [Pg.264]    [Pg.73]    [Pg.112]    [Pg.25]    [Pg.307]    [Pg.41]    [Pg.166]    [Pg.173]    [Pg.123]   
See also in sourсe #XX -- [ Pg.143 ]




SEARCH



Affinity separation

Separation parameters

© 2024 chempedia.info