Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vesicle adsorption

The mechanism responsible for improved delivery of lipophilic drugs has not yet been clarified. Absorption of liposomes by cells is unlikely. Adsorption to cells followed by slow release of the drug from the liposome, either via diffusion through the thin aqueous tear film or via direct partitioning from the membrane of the vesicle to the membrane of the cell, was proposed as a possible pathway. [Pg.309]

The artificial lipid bilayer is often prepared via the vesicle-fusion method [8]. In the vesicle fusion process, immersing a solid substrate in a vesicle dispersion solution induces adsorption and rupture of the vesicles on the substrate, which yields a planar and continuous lipid bilayer structure (Figure 13.1) [9]. The Langmuir-Blodgett transfer process is also a useful method [10]. These artificial lipid bilayers can support various biomolecules [11-16]. However, we have to take care because some transmembrane proteins incorporated in these artificial lipid bilayers interact directly with the substrate surface due to a lack of sufficient space between the bilayer and the substrate. This alters the native properties of the proteins and prohibits free diffusion in the lipid bilayer [17[. To avoid this undesirable situation, polymer-supported bilayers [7, 18, 19] or tethered bilayers [20, 21] are used. [Pg.226]

Adsorption Cycle Fig. 2.23 QCM responses on LbL assemblies (a) LbL assembly between dihexadecyl phosphate vesicle and PDDA (b) LbL assembly between anionic cerasome (larger step) and PDDA (smaller step) (c) LbL assembly between anionic cerasome (larger step) and cationic... [Pg.64]

This broad class of hydrolases constitutes a special category of enzymes which bind to and conduct their catalytic functions at the interface between the aqueous solution and the surface of membranes, vesicles, or emulsions. In order to explain the kinetics of lipolysis, one must determine the rates and affinities that govern enzyme adsorption to the interface of insoluble lipid structures -. One must also account for the special properties of the lipid surface as well as for the ability of enzymes to scooC along the lipid surface. See specific enzyme Micelle Interfacial Catalysis... [Pg.554]

The word liposome comprises two terms (from Greek—lipid [fat] and soma [body]). It does not in itself denote any size characteristics. Furthermore, the term liposome does not necessarily mean that it must contain lipophobic contents, such as water, although it usually does. The vesicles may be conceived as microscopic (or nano-sized) containers of carrying molecules (drugs) from one place to another. The structures are suitable for both transporting water-soluble or water-insoluble drugs. Since the lipids used are biocompatible molecules, this may also enhance their adsorption and penetration into the cells. [Pg.102]

Endocytosis involves the ceUular uptake of exogenous molecules or complexes inside plasma membrane-derived vesicles. This process can be divided into two major categories (1) adsorptive or phagocytic uptake of particles that have been bound to the membrane surface and (2) fluid or pinocytotic uptake, in which the particle enters the cell as part of the fluid phase. The solute within the vesicle is released intracellularly, possibly through lysosomal digestion of the vesicle membrane or by intermembrane fusion (Fig. 3.4). [Pg.24]

Seki and Tirrell [436] studied the pH-dependent complexation of poly(acrylic acid) derivatives with phospholipid vesicle membranes. These authors found that polyfacrylic acid), poly(methacrylic arid) and poly(ethacrylic acid) modify the properties of a phospholipid vesicle membrane. At or below a critical pH the polymers complex with the membrane, resulting in broadening of the melting transition. The value of the critical pH depends on the chemical structure and tacticity of the polymer and increases with polymer hydro-phobicity from approximately 4.6 for poly(acrylic acid) to approximately 8 for poly(ethacrylic acid). Subsequent photophysical and calorimetric experiments [437] and kinetic studies [398] support the hypothesis that these transitions are caused by pH dependent adsorption of hydrophobic polymeric carboxylic acids... [Pg.35]

Fig. I. Endocytic pathways used by cells to internalize soluble macromolecules [25] fluid-phase pinocytosis (1), adsorptive pinocytosis (2), and receptor-mediated endocytosis (pinocytosis) (6). Each of these processes involves a formation of a sealed vesicle formed from the plasma membrane which encloses part of the extracellular medium. The internalization of a polymer-drug conjugate (P-D), and targeted polymer-drug conjugate ( => —P-D) is shown. Other abbreviations — = cell surface receptor/antigen 1 = clathrin molecule X = lysosomal enzyme. Fluid-phase pinocytosis (1) and adsorptive pinocytosis (2) are nonspecific processes which direct the macromolecule into the lysosomal compartment of the cell. Once P-D is internalized, whether by (1) or (2), the resulting endosome (3) is ultimately fused with a primary lysosome (4) forming a secondary lysosome (5). In the latter compartment P-D is in contact with several types of lysosomal enzymes. The membrane of (5) is impermeable to macromolecules. Consequently, the structure of P-D may be designed in such... Fig. I. Endocytic pathways used by cells to internalize soluble macromolecules [25] fluid-phase pinocytosis (1), adsorptive pinocytosis (2), and receptor-mediated endocytosis (pinocytosis) (6). Each of these processes involves a formation of a sealed vesicle formed from the plasma membrane which encloses part of the extracellular medium. The internalization of a polymer-drug conjugate (P-D), and targeted polymer-drug conjugate ( => —P-D) is shown. Other abbreviations — = cell surface receptor/antigen 1 = clathrin molecule X = lysosomal enzyme. Fluid-phase pinocytosis (1) and adsorptive pinocytosis (2) are nonspecific processes which direct the macromolecule into the lysosomal compartment of the cell. Once P-D is internalized, whether by (1) or (2), the resulting endosome (3) is ultimately fused with a primary lysosome (4) forming a secondary lysosome (5). In the latter compartment P-D is in contact with several types of lysosomal enzymes. The membrane of (5) is impermeable to macromolecules. Consequently, the structure of P-D may be designed in such...
Hashimoto, T., et al. Improvement of intestinal absorption of peptides Adsorption of Bl-Phe monoglucosylated insulin to rat intestinal brush-border membrane vesicles. Eur J Pharm Biopharm 50 197. [Pg.33]

In THE PAST DECADE, IMPROVEMENTS IN infrared spectroscopic instrumentation have contributed to significant advances in the traditional analytical applications of the technique. Progress in the application of Fourier transform infrared spectroscopy to physiochemical studies of colloidal assemblies and interfaces has been more uneven, however. While much Fourier transform infrared spectroscopic work has been generated about the structure of lipid bilayers and vesicles, considerably less is available on the subjects of micelles, liquid crystals, or other structures adopted by synthetic surfactants in water. In the area of interfacial chemistry, much of the infrared spectroscopic work, both on the adsorption of polymers or proteins and on the adsorption of surfactants forming so called "self-assembled" mono- and multilayers, has transpired only in the last five years or so. [Pg.1]

The structure of the interfacial layers in food colloids can be quite complex as these are usually comprised of mixtures of a variety of surfactants and all are probably at least partly adsorbed at interfaces which even individually, can form complex adsorption layers. The layers can be viscoelastic. Phospholipids form multi-lamellar structures at the interface and proteins, such as casein, can adsorb in a variety of conformations [78]. Lecithins not only adsorb also at interfaces, but can affect the conformations of adsorbed casein. The situation in food emulsions can be complicated further by the additional presence of solid particles. For example, the fat droplets in homogenized milk are surrounded by a membrane that contains phospholipid, protein and semi-solid casein micelles [78,816], Similarly, the oil droplets in mayonnaise are partly coated with granular particles formed from the phospho and lipo-protein components of egg yolk [78]. Finally, the phospholipids can also interact with proteins and lecithins to form independent vesicles [78], thus creating an additional dispersed phase. [Pg.302]

Fig. 3 Vesicle stabilization by PLL covering (a, b), followed by separation of well-covered single vesicles from excess of nonbound PLL (b, c). Native vesicles are ruptured upon adsorption on a (PLL/HA)i2/PLL film, forming a lipidic bilayer (a, d). Free non-bound PLL is preferably adsorbed on a (PLL/HA)i2 film rather than on PLL-covered vesicles (b, e). Liposome-containing film (PLL/HA)i2/Lip-PLL/HA/PLL/HAis formed by adsorption of PLL-covered liposomes (Lip-PLL) on a (PLL/HA)i2 film, followed by additional coating with HA/PLL/HA layers (c, f). Reproduced from [82]... Fig. 3 Vesicle stabilization by PLL covering (a, b), followed by separation of well-covered single vesicles from excess of nonbound PLL (b, c). Native vesicles are ruptured upon adsorption on a (PLL/HA)i2/PLL film, forming a lipidic bilayer (a, d). Free non-bound PLL is preferably adsorbed on a (PLL/HA)i2 film rather than on PLL-covered vesicles (b, e). Liposome-containing film (PLL/HA)i2/Lip-PLL/HA/PLL/HAis formed by adsorption of PLL-covered liposomes (Lip-PLL) on a (PLL/HA)i2 film, followed by additional coating with HA/PLL/HA layers (c, f). Reproduced from [82]...
Gene delivery systems can distribute plasmids to the desired target cells, after which the plasmid is internalized into the cell by a number of mechanisms, such as adsorptive endocytosis, receptor-mediated endocytosis, micropinocytosis, caveolae-mediated endocytosis and phagocytosis (see Section 1.3.3.2). The intracellular fate of plasmids depends on the means by which they are internalized and translocated to the cytoplasms and then to the nucleus. In coated-pit endocytosis, DNA complexes first bind to the cell surface, then migrate to clathrin-coated pits about 150 ran in diameter and are internalized from the plasma membrane to form coated vesicles. [Pg.348]

Polymers, advanced materials Micelles, colloids, vesicles Adsorption problems Surfactants... [Pg.139]


See other pages where Vesicle adsorption is mentioned: [Pg.401]    [Pg.269]    [Pg.21]    [Pg.147]    [Pg.554]    [Pg.358]    [Pg.314]    [Pg.195]    [Pg.137]    [Pg.383]    [Pg.109]    [Pg.225]    [Pg.227]    [Pg.261]    [Pg.80]    [Pg.120]    [Pg.876]    [Pg.251]    [Pg.619]    [Pg.53]    [Pg.55]    [Pg.103]    [Pg.109]    [Pg.111]    [Pg.309]    [Pg.97]    [Pg.6]    [Pg.213]    [Pg.139]    [Pg.145]    [Pg.26]    [Pg.496]    [Pg.105]    [Pg.55]    [Pg.32]    [Pg.109]    [Pg.339]   
See also in sourсe #XX -- [ Pg.197 ]




SEARCH



© 2024 chempedia.info