Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Adsorption, reaction kinetics

Continuing the formal development of the influence of the adsorption isotherm on the apparent reaction kinetics, we next consider the case of a reac-... [Pg.726]

Adsorption is invariably an exothermic process, so that, provided equilibrium has been established, the amount adsorbed at a given relative pressure must diminish as the temperature increases. It not infrequently happens, however, that the isotherm at a given temperature Tj actually lies above the isotherm for a lower temperature Ti. Anomalous behaviour of this kind is characteristic of a system which is not in equilibrium, and represents the combined effects of temperature on the rate of approach to equilibrium and on the position of equilibrium itself. It points to a process which is activated in the reaction-kinetic sense and which therefore occurs more rapidly as temperature is increased. [Pg.228]

Adsorption rate of substance A is controlling in each case. When an inert substance I is adsorbed, the term K pi is to be added to the adsorption term. SOURCE From Walas, Reaction Kinetics for Chemical Engineers, McGraw HiU, 1959 Butterworths, 1989. [Pg.693]

Reaction kinetics at phase houndaiies. Rates of adsorption and desorption in porous adsorbents are generally controlled by mass transfer within the pore network rather than by the kinetics of sorption at the surface. Exceptions are the cases of chemisorption and affinity-adsorption systems used for biological separations, where the kinetics of bond formation can be exceedingly slow. [Pg.1510]

FIG. 16-27 Constant pattern solutions for R = 0.5. Ordinant is cfor nfexcept for axial dispersion for which individual curves are labeled a, axial dispersion h, external mass transfer c, pore diffusion (spherical particles) d, surface diffusion (spherical particles) e, linear driving force approximation f, reaction kinetics. [from LeVan in Rodrigues et al. (eds.), Adsorption Science and Technology, Kluwer Academic Publishers, Dor drecht, The Nether lands, 1989 r eprinted with permission.]... [Pg.1528]

The overall reaction kinetics conesponding to these stages of surface adsorption followed by reaction can be represented by die equation... [Pg.133]

Solution The elementary reaction steps of adsorption, reaction, and desorption are now reversible. From this point on, we will set ai = a, pi = P, and so on, since the intrinsic kinetics are desired. The relationships between ai, a, and a are addressed using an eflectiveness factor in Section 10.4. The various reaction steps are... [Pg.356]

Schalow T, Brandt B, Starr DE, Laurin M, Shaikhutdinov SK, Schauermann S, Libuda J, Freund HJ. 2007. Particle size dependent adsorption and reaction kinetics on reduced and partially oxidized Pd nanoparticles. Phys Chem Chem Phys 9 1347-1361. [Pg.563]

Adsorption and desorption. The user can choose to handle this using either temperature-corrected first order reaction kinetics, in which case the concentrations are always moving towards equilibrium but never quite reach it, or he can use a Freundlich isotherm, in which instantaneous equilibrium is assumed. With the Freundlich method, he can elect either to use a single-valued isotherm or a non-single-valued one. This was included in the model because there is experimental evidence which suggests that pesticides do not always follow the same curve on desorption as they do on adsorption. [Pg.134]

Adsorption and desorption between the solution phase and sand, silt and clay in suspension and on the bed. First order reaction kinetics are used. [Pg.138]

Uses of adsorption studies Determination of catalytically active surface area and elucidation of reaction kinetics Determination of specific surface areas and pore size distributions... [Pg.172]

Barrow N.J., Gerth J., Brnmmer G.W. Reaction kinetics of the adsorption and desorption of nickel, zinc and cadmium by goethite. II Modelling the extent and rate of reaction. J Soil Sci 1989 40 437M50. [Pg.331]

It is often found that the ratio R (measured, for instance, by gas adsorption methods) of actual metal surface area accessible to the gas phase, to the geometric film area, exceeds unity. This arises from nonplanarity of the outermost film surface both on an atomic and a more macroscopic scale, and from porosity of the film due to gaps between the crystals. These gags are typically up to about 20 A wide. However, for film thicknesses >500 A, this gap structure is never such as completely to isolate metal crystals one from the other, and almost all of the substrate is, in fact, covered by metal. In practice, catalytic work mostly uses thick films in the thickness range 500-2000 A, and it is easily shown (7) that intercrystal gaps in these films will not influence catalytic reaction kinetics provided the half-life of the reaction exceeds about 10-20 sec, which will usually be the case. [Pg.2]

Propagation problems. These problems are concerned with predicting the subsequent behavior of a system from a knowledge of the initial state. For this reason they are often called the transient (time-varying) or unsteady-state phenomena. Chemical engineering examples include the transient state of chemical reactions (kinetics), the propagation of pressure waves in a fluid, transient behavior of an adsorption column, and the rate of approach to equilibrium of a packed distillation column. [Pg.3]

We can conclude that the CO TPD experiments performed on Cu-K-FER can be described by the four-site adsorption model based on the reaction kinetics. The low-energy peak in TPD was attributed to adsorption complexes formed on the heterogeneous dual cation sites. Adsorption energies obtained from the fit of TPD are in good agreement with the results obtained for Cu-Na-FER samples previously and with the results of DFT calculations. [Pg.144]

The performance of adsorption processes results in general from the combined effects of thermodynamic and rate factors. It is convenient to consider first thermodynamic factors. These determine the process performance in a limit where the system behaves ideally i.e. without mass transfer and kinetic limitations and with the fluid phase in perfect piston flow. Rate factors determine the efficiency of the real process in relation to the ideal process performance. Rate factors include heat-and mass-transfer limitations, reaction kinetic limitations, and hydro-dynamic dispersion resulting from the velocity distribution across the bed and from mixing and diffusion in the interparticle void space. [Pg.18]

Reaction kinetics at phase boundaries. Rates of adsorption and desorption in porous adsorbents are generally controlled by mass... [Pg.18]

The assessment of reaction kinetics by means of batch tests may be strongly affected by dye adsorption on the biophase and supports. The relevance of the adsorption phenomena of dyes on biophase has been addressed in studies regarding free cells [41], granular support biofilm [24], entrapped cells [11, 18], anaerobic sludge [10,24,31,34] and biological activated carbon (BAC) [42,45,47,48]. They have pointed out that the kinetics may be overestimated if the assessment of the adsorption contribution to the dye removal is not taken into account. Under batch conditions, the dye is fastly split between the liquid phase and the biophase, resulting in a sharp reduction of the dye concentration in the liquid phase until adsorption equilibrium is approached. The rate of dye adsorption must be estimated and ruled out in the kinetic assessment. [Pg.113]

In the biomedical literature (e.g. solute = enzyme, drug, etc.), values of kf and kr are often estimated from kinetic experiments that do not distinguish between diffusive transport in the external medium and chemical reaction effects. In that case, reaction kinetics are generally assumed to be rate-limiting with respect to mass transport. This assumption is typically confirmed by comparing the adsorption transient to maximum rates of diffusive flux to the cell surface. Values of kf and kr are then determined from the start of short-term experiments with either no (determination of kf) or a finite concentration (determination of kT) of initial surface bound solute [189]. If the rate constant for the reaction at the cell surface is near or equal to (cf. equation (16)), then... [Pg.475]

Mechanisms of Sorption Processes. Kinetic studies are valuable for hypothesizing mechanisms of reactions in homogeneous solution, but the interpretation of kinetic data for sorption processes is more difficult. Recently it has been shown that the mechanisms of very fast adsorption reactions may be interpreted from the results of chemical relaxation studies (25-27). Yasunaga and Ikeda (Chapter 12) summarize recent studies that have utilized relaxation techniques to examine the adsorption of cations and anions on hydrous oxide and aluminosilicate surfaces. Hayes and Leckie (Chapter 7) present new interpretations for the mechanism of lead ion adsorption by goethite. In both papers it is concluded that the kinetic and equilibrium adsorption data are consistent with the rate relationships derived from an interfacial model in which metal ions are located nearer to the surface than adsorbed counterions. [Pg.6]

It is important to propose molecular and theoretical models to describe the forces, energy, structure and dynamics of water near mineral surfaces. Our understanding of experimental results concerning hydration forces, the hydrophobic effect, swelling, reaction kinetics and adsorption mechanisms in aqueous colloidal systems is rapidly advancing as a result of recent Monte Carlo (MC) and molecular dynamics (MO) models for water properties near model surfaces. This paper reviews the basic MC and MD simulation techniques, compares and contrasts the merits and limitations of various models for water-water interactions and surface-water interactions, and proposes an interaction potential model which would be useful in simulating water near hydrophilic surfaces. In addition, results from selected MC and MD simulations of water near hydrophobic surfaces are discussed in relation to experimental results, to theories of the double layer, and to structural forces in interfacial systems. [Pg.20]


See other pages where Adsorption, reaction kinetics is mentioned: [Pg.940]    [Pg.1030]    [Pg.619]    [Pg.940]    [Pg.1030]    [Pg.619]    [Pg.233]    [Pg.137]    [Pg.76]    [Pg.221]    [Pg.243]    [Pg.661]    [Pg.198]    [Pg.335]    [Pg.441]    [Pg.163]    [Pg.166]    [Pg.524]    [Pg.50]    [Pg.215]    [Pg.216]    [Pg.394]    [Pg.2]    [Pg.36]    [Pg.446]    [Pg.8]    [Pg.20]    [Pg.33]   
See also in sourсe #XX -- [ Pg.251 ]




SEARCH



Adsorption kinetic

Adsorption reaction

© 2024 chempedia.info