Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Adsorption overpotential

The present Section, which provides an outline of selected relevant topics in electrochemistry, is intended primarily as an introduction to aqueous corrosion for those readers whose basic training has not involved a study of electrochemistry. The scope of electrochemistry is enormous and cannot be treated adequately here, but there are now a number of excellent books on the subject, and it is hoped that this outline will serve to stimulate further study. The topics selected are as follows a) the nature of the electrified interface between the metal and the solution, (b) adsorption, (c) transfer of charge across the interface under equilibrium and non-equilibrium conditions, d) overpotential and the rate of an electrode reaction and (e) the hydrogen evolution reaction and hydrogen absorption by ferrous alloys. For reasons of space a number of important topics, such as the electrochemistry of electrolyte solutions, have been omitted. [Pg.1165]

Reaction overpotential. Both overpotentials mentioned above are normally of higher importance than the reaction overpotential. It may happen sometimes, however, that other phenomena, which occur in the electrolyte or during electrode processes, such as adsorption and desorption, are the speed-limiting factors. Crystallization overpotential. This exists as a result of the inhibited intercalation of metal ions into their lattice. This process is of fundamental importance when secondary batteries are charged, especially during metal deposition on the negative side. [Pg.15]

The activation overpotential Tiac,w is due to slow charge transfer reactions at the electrode-electrolyte interface and is related to current via the Butler-Volmer equation (4.7). A slow chemical reaction (e.g. adsorption, desorption, spillover) preceding or following the charge-transfer step can also contribute to the development of activation overpotential. [Pg.124]

During metal deposition processes the addition of adsorbable species has been found to cause an increase in the deposition overpotential [71 Lou]. Evaluation of the data results in the calculation of an adsorption isotherm. (Data obtained with this method are labelled CT.)... [Pg.240]

The possibility that adsorption reactions play an important role in the reduction of telluryl ions has been discussed in several works (Chap. 3 CdTe). By using various electrochemical techniques in stationary and non-stationary diffusion regimes, such as voltammetry, chronopotentiometry, and pulsed current electrolysis, Montiel-Santillan et al. [52] have shown that the electrochemical reduction of HTeOj in acid sulfate medium (pH 2) on solid tellurium electrodes, generated in situ at 25 °C, must be considered as a four-electron process preceded by a slow adsorption step of the telluryl ions the reduction mechanism was observed to depend on the applied potential, so that at high overpotentials the adsorption step was not significant for the overall process. [Pg.73]

At Pt electrodes, adsorption of oxygen species is supposed to be controlled by the Temkin isotherm in the low overpotential region [Damjanovic and Bockris, 1966], whereas in the higher overpotential region, the absence of an oxide layer leads to... [Pg.364]

In the presence of iodide ions, the overpotential at a mercury electrode decreases, although the adsorption of iodide is minimal in the potential region corresponding to hydrogen evolution. The adsorption of iodide... [Pg.367]

Electrode processes can be retarded (i.e. their overpotential is increased) by the adsorption of the components of the electrolysed solution, of the products of the actual electrode reaction and of other substances formed at the electrode. Figure 5.43 depicts the effect of the adsorption of methanol on the adsorption of hydrogen at a platinum electrode (see page 353). [Pg.372]

A number of metal porphyrins have been examined as electrocatalysts for H20 reduction to H2. Cobalt complexes of water soluble masri-tetrakis(7V-methylpyridinium-4-yl)porphyrin chloride, meso-tetrakis(4-pyridyl)porphyrin, and mam-tetrakis(A,A,A-trimethylamlinium-4-yl)porphyrin chloride have been shown to catalyze H2 production via controlled potential electrolysis at relatively low overpotential (—0.95 V vs. SCE at Hg pool in 0.1 M in fluoroacetic acid), with nearly 100% current efficiency.12 Since the electrode kinetics appeared to be dominated by porphyrin adsorption at the electrode surface, H2-evolution catalysts have been examined at Co-porphyrin films on electrode surfaces.13,14 These catalytic systems appeared to be limited by slow electron transfer or poor stability.13 However, CoTPP incorporated into a Nafion membrane coated on a Pt electrode shows high activity for H2 production, and the catalysis takes place at the theoretical potential of H+/H2.14... [Pg.474]

The thermodynamic redox potential of NAD+/NADH is —0.56 V vs SCE at neutral pH. The NADH cofactor itself is not a useful redox mediator because of the high overpotential and lack of electrochemical reversibility for the NADH/NAD+ redox process, and the interfering adsorption of the cofactor at electrode surfaces. [Pg.423]

From gas phase measurements CO is known to prefer top sites on all three low index faces, with the CO molecule perpendicular to the surface and bonded through the carbon end of the molecule except at high coverages (27). It is likely that HCOOH and COOH are adsorbed in a similar way. It is not likely that they could "enter the "troughs , which seems to be possible for anions. For Pt(100) on the other hand, upon sweep reversal and gradual oxide reduction, anions are immediately adsorbed on that "flat" surface. They block adsorption of HCOOH. Adsorption of anions decreases as potential becomes more negative. The oxidation of HCOOH commences and the rate increases as at more negative potentials, i.e. at lower overpotential. A competition between anions and HCOOH adsorption explains this apparently anomalous behaviour. The explanation of the "anomalous behaviour of the Pt(110) surface can be also found in the data for stepped surface vicinal to the (100) and (110) orientations. [Pg.513]

It is important to note that as early as 1931, the density of electronic states in metals, the distribution of electronic states of ions in solution, and the effect of adsorption of species on metal electrode surfaces on activation barriers were adequately taken into account in the seminal Gurney-Butler nonquadratic quantum mechanical treatments, which provide excellent agreement with the observed current-overpotential dependence. [Pg.85]

The kinetics of MeOH oxidation of a 1 1 PfRu in an MEA has been well established by Vidakovic, Christov, and Sundmacher. At low overpotentials, the MeOH oxidation reaction was found to be zero order in MeOH concentration, indicating that CO oxidation is the rate-determining step. A Tafel slope of 50-60 mV dec was found at 60°C. At higher overpotentials, positive reaction orders were found, suggesting that MeOH adsorption becomes rate determining. An activation energy of 55 kj moP was found this agrees well with the values found for similar bulk PtRu electrodes. [Pg.48]

In general, the electrochemical performance of carbon materials is basically determined by the electronic properties, and given its interfacial character, by the surface structure and surface chemistry (i.e. surface terminal functional groups or adsorption processes) [1,2]. Such features will affect the electrode kinetics, potential limits, background currents and the interaction with molecules in solution [2]. From the point of view of electroanalysis, the remarkable benefits of CNT-modified electrodes have been widely praised, including low detection limits, increased sensitivity, decreased overpotentials and resistance to surface fouling [5, 9, 11, 17]. [Pg.123]


See other pages where Adsorption overpotential is mentioned: [Pg.269]    [Pg.22]    [Pg.269]    [Pg.22]    [Pg.1204]    [Pg.1211]    [Pg.855]    [Pg.321]    [Pg.643]    [Pg.174]    [Pg.105]    [Pg.124]    [Pg.313]    [Pg.94]    [Pg.297]    [Pg.366]    [Pg.570]    [Pg.150]    [Pg.366]    [Pg.159]    [Pg.134]    [Pg.207]    [Pg.64]    [Pg.113]    [Pg.116]    [Pg.124]    [Pg.511]    [Pg.326]    [Pg.202]    [Pg.224]    [Pg.247]    [Pg.280]    [Pg.434]    [Pg.559]    [Pg.560]    [Pg.562]   
See also in sourсe #XX -- [ Pg.10 ]

See also in sourсe #XX -- [ Pg.22 ]




SEARCH



Overpotential

Overpotentials

© 2024 chempedia.info