Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Adsorption, metal surfaces

The second detergent function is to prevent formation of varnishes that come from polymerization of deposits on hot surfaces of the cylinder and the piston. Finally, by adsorption on metallic surfaces, these compounds have anti-corrosion effects. [Pg.360]

Levine and Zisman [46] confirmed and extended Hardy s results, using films on glass and on metal surfaces that were deposited by adsorption either from... [Pg.444]

Process 2, the adsorption of the reactant(s), is often quite rapid for nonporous adsorbents, but not necessarily so it appears to be the rate-limiting step for the water-gas reaction, CO + HjO = CO2 + H2, on Cu(lll) [200]. On the other hand, process 4, the desorption of products, must always be activated at least by Q, the heat of adsorption, and is much more apt to be slow. In fact, because of this expectation, certain seemingly paradoxical situations have arisen. For example, the catalyzed exchange between hydrogen and deuterium on metal surfaces may be quite rapid at temperatures well below room temperature and under circumstances such that the rate of desorption of the product HD appeared to be so slow that the observed reaction should not have been able to occur To be more specific, the originally proposed mechanism, due to Bonhoeffer and Farkas [201], was that of Eq. XVIII-32. That is. [Pg.720]

Perhaps the most fascinating detail is the surface reconstruction that occurs with CO adsorption (see Refs. 311 and 312 for more general discussions of chemisorption-induced reconstructions of metal surfaces). As shown in Fig. XVI-8, for example, the Pt(lOO) bare surface reconstructs itself to a hexagonal pattern, but on CO adsorption this reconstruction is lifted [306] CO adsorption on Pd( 110) reconstructs the surface to a missing-row pattern [309]. These reconstructions are reversible and as a result, oscillatory behavior can be observed. Returning to the Pt(lOO) case, as CO is adsorbed patches of the simple 1 x 1 structure (the structure of an undistorted (100) face) form. Oxygen adsorbs on any bare 1 x 1 spots, reacts with adjacent CO to remove it as CO2, and at a certain point, the surface reverts to toe hexagonal stmcture. The presumed sequence of events is shown in Fig. XVIII-28. [Pg.737]

Chemisorption occurs when the attractive potential well is large so that upon adsorption a strong chemical bond to a surface is fonued. Chemisorption involves changes to both the molecule and surface electronic states. For example, when oxygen adsorbs onto a metal surface, a partially ionic bond is created as charge transfers from the substrate to the oxygen atom. Other chemisorbed species interact in a more covalent maimer by sharing electrons, but this still involves perturbations to the electronic system. [Pg.294]

An example of the fomiation of a new reconstmction is given by certain fee (110) metal surfaces. The clean surfaces have (1x1) synunetry, but become (2x1) upon adsorption of oxygen [16, 38]. The (2x1) synuiietry is not just due to oxygen being adsorbed into a (2 x 1) surface unit cell, but also because the substrate atoms rearrange themselves... [Pg.299]

A more dramatic type of restmctiiring occurs with the adsorption of alkali metals onto certain fee metal surfaces [39]. In this case, multilayer composite surfaces are fomied in which the alkali and metal atoms are intemiixed in an ordered stmcture. These stmctiires involve the substitution of alkali atoms into substrate sites, and the details of the stmctiires are found to be coverage-dependent. The stmctiires are influenced by the repulsion between the dipoles fomied by neighbouring alkali adsorbates and by the interactions of the alkalis with the substrate itself [40]. [Pg.299]

Diehl R D and McGrath R 1996 Structural studies of alkali metal adsorption and coadsorption on metal surfaces Surf. Sc/. Rep. 23 43... [Pg.318]

The saturation coverage during chemisorption on a clean transition-metal surface is controlled by the fonnation of a chemical bond at a specific site [5] and not necessarily by the area of the molecule. In addition, in this case, the heat of chemisorption of the first monolayer is substantially higher than for the second and subsequent layers where adsorption is via weaker van der Waals interactions. Chemisorption is often usefLil for measuring the area of a specific component of a multi-component surface, for example, the area of small metal particles adsorbed onto a high-surface-area support [6], but not for measuring the total area of the sample. Surface areas measured using this method are specific to the molecule that chemisorbs on the surface. Carbon monoxide titration is therefore often used to define the number of sites available on a supported metal catalyst. In order to measure the total surface area, adsorbates must be selected that interact relatively weakly with the substrate so that the area occupied by each adsorbent is dominated by intennolecular interactions and the area occupied by each molecule is approximately defined by van der Waals radii. This... [Pg.1869]

Kruger S and Rdsch N 1994 The moderately-large-embedded-cluster method for metal surfaces a density-functional study of atomic adsorption J. Phys. Condens Matters 8149... [Pg.2237]

Adsorption of a neutral (n ) onto a metal surface leads to a heat of adsorption of Q, as the electrons and nuclei of the neutral and metal attract or repel each other. Partial positive and negative charges are induced on each with the formation of a dipolar field (Figure 7.4). [Pg.47]

Similarly, adsorption of ions (n+) onto a metal surface leads to a heat of adsorption of Q,. Generally, Q is about 2-3 eV and is greater than Q, which itself is about 1 eV. The difference between Q, and is the energy required to ionize neutrals (n ) on a metal surface so as to give ions (n+) or vice versa. This difference, Q - Q, can be equal to, greater than, or less than the difference, I - ( ), between the ionization energy (1) of the neutral and the ease with which a metal can donate or accept an electron (the work function, ( )). Where Q, - Q, > I - ( ), the adsorbed... [Pg.47]

Silicates. For many years, siUcates have been used to inhibit aqueous corrosion, particularly in potable water systems. Probably due to the complexity of siUcate chemistry, their mechanism of inhibition has not yet been firmly estabUshed. They are nonoxidizing and require oxygen to inhibit corrosion, so they are not passivators in the classical sense. Yet they do not form visible precipitates on the metal surface. They appear to inhibit by an adsorption mechanism. It is thought that siUca and iron corrosion products interact. However, recent work indicates that this interaction may not be necessary. SiUcates are slow-acting inhibitors in some cases, 2 or 3 weeks may be required to estabUsh protection fully. It is beheved that the polysiUcate ions or coUoidal siUca are the active species and these are formed slowly from monosilicic acid, which is the predorninant species in water at the pH levels maintained in cooling systems. [Pg.270]

Volume 13 Adsorption on Metal Surfaces. An Integrated Approach edited by J. Benard... [Pg.261]

In this article, we will discuss the use of physical adsorption to determine the total surface areas of finely divided powders or solids, e.g., clay, carbon black, silica, inorganic pigments, polymers, alumina, and so forth. The use of chemisorption is confined to the measurements of metal surface areas of finely divided metals, such as powders, evaporated metal films, and those found in supported metal catalysts. [Pg.737]

The gases that have been used most often are hydrogen, carbon monoxide, and oxygen. Hydrogen is by far the most useful, and it has the best established adsorption mechanism. It dissociates at room temperature on most clean metal surfaces of... [Pg.740]

The use of CO is complicated by the fact that two forms of adsorption—linear and bridged—have been shown by infrared (IR) spectroscopy to occur on most metal surfaces. For both forms, the molecule usually remains intact (i.e., no dissociation occurs). In the linear form the carbon end is attached to one metal atom, while in the bridged form it is attached to two metal atoms. Hence, if independent IR studies on an identical catalyst, identically reduced, show that all of the CO is either in the linear or the bricked form, then the measurement of CO isotherms can be used to determine metal dispersions. A metal for which CO cannot be used is nickel, due to the rapid formation of nickel carbonyl on clean nickel surfaces. Although CO has a relatively low boiling point, at vet) low metal concentrations (e.g., 0.1% Rh) the amount of CO adsorbed on the support can be as much as 25% of that on the metal a procedure has been developed to accurately correct for this. Also, CO dissociates on some metal surfaces (e.g., W and Mo), on which the method cannot be used. [Pg.741]


See other pages where Adsorption, metal surfaces is mentioned: [Pg.312]    [Pg.634]    [Pg.901]    [Pg.903]    [Pg.904]    [Pg.904]    [Pg.951]    [Pg.1682]    [Pg.1757]    [Pg.1781]    [Pg.1784]    [Pg.1949]    [Pg.2222]    [Pg.2222]    [Pg.2223]    [Pg.2224]    [Pg.2224]    [Pg.170]    [Pg.263]    [Pg.222]    [Pg.536]    [Pg.270]    [Pg.223]    [Pg.508]    [Pg.56]    [Pg.309]    [Pg.451]    [Pg.697]    [Pg.737]    [Pg.78]   
See also in sourсe #XX -- [ Pg.271 ]




SEARCH



Adsorption and the surface energies of metals

Adsorption metal oxide surfaces

Adsorption metal surface area

Adsorption metal surfaces, SIMS studies

Adsorption on metal surfaces

Adsorption-induced reconstruction surface metal atom

Alkaloids metal surface adsorption

Halide Adsorption on Metal Surfaces

Hydrogen adsorption, metal surface

Metal oxides surfaces, surfactant adsorption

Metal surfaces physical adsorption

Metallic adsorption

Monomer adsorption, metal surface

Phytoplankton surfaces, metal adsorption

Sulfur adsorption thermodynamics, metal surfaces

Surface metal atom, adsorption-induced

The Adsorption of Water on Metal Surfaces

Transition metal adsorption surfaces

© 2024 chempedia.info