Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Adsorption hysteresis loop

The lower closure point of the adsorption hysteresis loop of fluids in mesoporous silica materials... [Pg.177]

The classification of adsorption hysteresis loops has been always stated In terms of the appearance of these curves, e.g. their shape or extension. Among the most Important classifications, that of de Boer (ref. I) is based on a combination between the steep or sloping character of the adsorption and desorption branches, while Everett s classification (ref. 2) emphasizes the extent of the region of relative pressures at which hysteresis occurs. A classification adopted by the lUPAC (ref. 3) considers four types of loops, which are Identified according to the slope of the boundary curves. It lias been Intended, a posteriori, to relate these shapes of hysteresis loops to some processes of filling by capillary condensate or evaporation of the liquid held in a pore, and in order to justify the existence of these mechanisms, several models of the pore geometry have been considered. [Pg.51]

Adsorbents such as some silica gels and types of carbons and zeolites have pores of the order of molecular dimensions, that is, from several up to 10-15 A in diameter. Adsorption in such pores is not readily treated as a capillary condensation phenomenon—in fact, there is typically no hysteresis loop. What happens physically is that as multilayer adsorption develops, the pore becomes filled by a meeting of the adsorbed films from opposing walls. Pores showing this type of adsorption behavior have come to be called micropores—a conventional definition is that micropore diameters are of width not exceeding 20 A (larger pores are called mesopores), see Ref. 221a. [Pg.669]

The basis of the classification is that each of the size ranges corresponds to characteristic adsorption effects as manifested in the isotherm. In micropores, the interaction potential is significantly higher than in wider pores owing to the proximity of the walls, and the amount adsorbed (at a given relative pressure) is correspondingly enhanced. In mesopores, capillary condensation, with its characteristic hysteresis loop, takes place. In the macropore range the pores are so wide that it is virtually impossible to map out the isotherm in detail because the relative pressures are so close to unity. [Pg.25]

It frequently happens that the micropore effect, the enhancement of interaction potential and the resultant adsorption, ceases to appear when the value of w (and the corresponding relative pressure) is still below the beginning of the hysteresis loop. Within recent years, the micropore range... [Pg.25]

A characteristic feature of a Type IV isotherm is its hysteresis loop. The exact shape of the loop varies from one adsorption system to another, but, as indicated in Fig. 3.1, the amount adsorbed is always greater at any given relative pressure along the desorption branch FJD than along the adsorption branch DEF. The loop is reproducible provided that the desorption run is started from a point beyond F which marks the upper limit of the loop. [Pg.111]

The model proposed by Zsigmondy—which in broad terms is still accepted to-day—assumed that along the initial part of the isotherm (ABC of Fig. 3.1), adsorption is restricted to a thin layer on the walls, until at D (the inception of the hysteresis loop) capillary condensation commences in the finest pores. As the pressure is progressively increased, wider and wider pores are filled until at the saturation pressure the entire system is full of condensate. [Pg.113]

Thus, as pointed out by Cohan who first suggested this model, condensation and evaporation occur at difi erent relative pressures and there is hysteresis. The value of r calculated by the standard Kelvin equation (3.20) for a given uptake, will be equal to the core radius r,. if the desorption branch of the hysteresis loop is used, but equal to twice the core radius if the adsorption branch is used. The two values of should, of course, be the same in practice this is rarely found to be so. [Pg.127]

Before proceeding to detail, however, it is necessary to consider the question as to which branch of the hysteresis loop—the adsorption or the desorption branch—should be used. Though the mode of calculation is... [Pg.135]

Fig. 3.19 Contrast between the pore size distribution curves based on the adsorption and the desorption branch of the hysteresis loop respectively. Fig. 3.19 Contrast between the pore size distribution curves based on the adsorption and the desorption branch of the hysteresis loop respectively.
Thus the hysteresis loop should close at a relative pressure determined by the tensile strength of the liquid adsorptive, no matter whether the pore system extends to finer pores than those characterized by or not. [Pg.157]

Fig. 3.24 Test of the tensile strength hysteresis of hysteresis (Everett and Burgess ). TjT, is plotted against — Tq/Po where is the critical temperature and p.. the critical pressure, of the bulk adsorptive Tq is the tensile strength calculated from the lower closure point of the hysteresis loop. C), benzene O. xenon , 2-2 dimethyl benzene . nitrogen , 2,2,4-trimethylpentane , carbon dioxide 4 n-hexane. The lowest line was calculated from the van der Waals equation, the middle line from the van der Waals equation as modified by Guggenheim, and the upper line from the Berthelot equation. (Courtesy Everett.)... Fig. 3.24 Test of the tensile strength hysteresis of hysteresis (Everett and Burgess ). TjT, is plotted against — Tq/Po where is the critical temperature and p.. the critical pressure, of the bulk adsorptive Tq is the tensile strength calculated from the lower closure point of the hysteresis loop. C), benzene O. xenon , 2-2 dimethyl benzene . nitrogen , 2,2,4-trimethylpentane , carbon dioxide 4 n-hexane. The lowest line was calculated from the van der Waals equation, the middle line from the van der Waals equation as modified by Guggenheim, and the upper line from the Berthelot equation. (Courtesy Everett.)...
Figure 3.26(a) and (h) gives results for nitrogen on a compact of silica. Curve (a) is a comparison plot in which the adsorption on the compact (ordinates) is plotted against that on the uncompacted powder (abscissae) there is a clear break followed by an increased slope, denoting enhanced adsorption on the compact, at p/p° = 0-15, far below the lower closure point ( 0-42) of the hysteresis loop in the isotherm (curve (b)). A second compact, prepared at 64 ton in" rather than 130 ton in", showed a break, not quite so sharp, at p/p° = 0-35. [Pg.160]

Fig. 3.28 The Kiselev method for calculation of specific surface from the Type IV isotherm of a compact of alumina powder prepared at 64 ton in". (a) Plot of log, (p7p) against n (showing the upper (n,) and lower (n,) limits of the hysteresis loop) for (i) the desorption branch, and (ii) the adsorption branch of the loop. Values of. 4(des) and /4(ads) are obtained from the area under curves (i) or (ii) respectively, between the limits II, and n,. (6) The relevant part of the isotherm. Fig. 3.28 The Kiselev method for calculation of specific surface from the Type IV isotherm of a compact of alumina powder prepared at 64 ton in". (a) Plot of log, (p7p) against n (showing the upper (n,) and lower (n,) limits of the hysteresis loop) for (i) the desorption branch, and (ii) the adsorption branch of the loop. Values of. 4(des) and /4(ads) are obtained from the area under curves (i) or (ii) respectively, between the limits II, and n,. (6) The relevant part of the isotherm.
Low-pressure hysteresis is not confined to Type I isotherms, however, and is frequently superimposed on the conventional hysteresis loop of the Type IV isotherm. In the region below the shoulder of the hysteresis loop the desorption branch runs parallel to the adsorption curve, as in Fig. 4.26, and in Fig. 4.2S(fi) and (d). It is usually found that the low-pressure hysteresis does not appear unless the desorption run commences from a relative pressure which is above some threshold value. In the study of butane adsorbed on powdered graphite referred to in Fig. 3.23, for example, the isotherm was reversible so long as the relative pressure was confined to the branch below the shoulder F. [Pg.234]

Adsorption of benzene by carbon 8P. Height (A) of hysteresis loop at p/p — 0-25, and uptake at saturation (w,). Runs were carried out in the order givent... [Pg.235]

The limits of pore size corresponding to each process will, of course, depend both on the pore geometry and the size of the adsorbate molecule. For slit-shaped pores the primary process will be expected to be limited to widths below la, and the secondary to widths between 2a and 5ff. For more complicated shapes such as interstices between small spheres, the equivalent diameter will be somewhat higher, because of the more effective overlap of adsorption fields from neighbouring parts of the pore walls. The tertiary process—the reversible capillary condensation—will not be able to occur at all in slits if the walls are exactly parallel in other pores, this condensation will take place in the region between 5hysteresis loop and in a pore system containing a variety of pore shapes, reversible capillary condensation occurs in such pores as have a suitable shape alongside the irreversible condensation in the main body of pores. [Pg.244]

The first stage in the interpretation of a physisorption isotherm is to identify the isotherm type and hence the nature of the adsorption process(es) monolayer-multilayer adsorption, capillary condensation or micropore filling. If the isotherm exhibits low-pressure hysteresis (i.e. at p/p° < 0 4, with nitrogen at 77 K) the technique should be checked to establish the degree of accuracy and reproducibility of the measurements. In certain cases it is possible to relate the hysteresis loop to the morphology of the adsorbent (e.g. a Type B loop can be associated with slit-shaped pores or platey particles). [Pg.285]

A new classification of hysteresis loops, as recommended in the lUPAC manual, consists of the four types shown in the Figure below. To avoid confusion with the original de Boer classification (p. 117), the characteristic types are now designated HI, H2, H3 and H4 but it is evident that the first three types correspond to types A, E and B, respectively, in the original classification. It will be noted that HI and H4 represent extreme types in the former the adsorption and desorption branches are almost vertical and nearly parallel over an appreciable range of gas uptake, whereas in the latter they are nearly horizontal and parallel over a wide range of relative pressure. Types H2 and H3 may be regarded as intermediate between the two extremes. [Pg.287]

This principle is illustrated in Figure 10 (45). Water adsorption at low pressures is markedly reduced on a poly(vinyhdene chloride)-based activated carbon after removal of surface oxygenated groups by degassing at 1000°C. Following this treatment, water adsorption is dominated by capillary condensation in mesopores, and the si2e of the adsorption-desorption hysteresis loop increases, because the pore volume previously occupied by water at the lower pressures now remains empty until the water pressure reaches pressures 0.3 to 0.4 times the vapor pressure) at which capillary condensation can occur. [Pg.277]

Figure 1 shows a sharp decrease of low-pressure hysteresis loop when introducing copper in S-l, pointing to the formation of (CuO)n nanoclusters into the S-l intracrystalline channels and supermicropores. The adsorption data analysis (see Table 1) shows a decrease of both the total (BET) surface area and micropore volume of the CuS-1 sample with respect to the S-l matrix. [Pg.175]

The nitrogen adsorption isotherms for the onion-like Fe-modified MLV-0.75 materials are of type IV, although their hysteresis loops are of complex types, HI, H2, and H3. The H2-type hysteresis loop indicates the presence of bottle-shaped pores. The pore sizes obtained with the BJH method can be assigned to entry windows of mesopores. For pure MLV-0.75 and Fe-modified MLV-0.75 (x = 1.25), the pore size distributions exhibit two peaks (Fig. Id). The first peak appears at 9.0 and ca. 6 nm for MLV-0.75 and Fe-MLV-0.75, respectively. The shift of the broad peak maximum of the distribution curve... [Pg.194]

Table 16-4 shows the IUPAC classification of pores by size. Micropores are small enough that a molecule is attracted to both of the opposing walls forming the pore. The potential energy functions for these walls superimpose to create a deep well, and strong adsorption results. Hysteresis is generally not observed. (However, water vapor adsorbed in the micropores of activated carbon shows a large hysteresis loop, and the desorption branch is sometimes used with the Kelvin equation to determine the pore size distribution.) Capillary condensation occurs in mesopores and a hysteresis loop is typically found. Macropores form important paths for molecules to diffuse into a par-... [Pg.8]

NaY yields a compietely reversible type I isotherm, characteristic of micropore filling common in many zeolites. However, USY-B and DAY yield an isotherm close to type IV. Similar differences in adsorption isotherms were observed for n-hexane, cyclohexane, n-pentane and benzene. Furthermore, many of the isotherms measured on DAY zeolites showed hysteresis loops (Figure 6). [Pg.176]

Existence of a large amount of mesopores usually results in the appearance of capillary condensation hysteresis loop. Type II AIs transform to type IV, and type III AIs transform to type V Type VI AIs are characteristic to low-temperature adsorption of some noble gases over energetically homogeneous surfaces. [Pg.275]

One of the most widely used methods for determining the pore size and surface area of zeolites is nitrogen physisorphon. From the shape of the nitrogen adsorption and desorption isotherm the presence and shape of the mesopores can be deduced. As shown in Figure 4.41 a faujasite without mesopores have a type I isotherm since the micropores fiU and empty reversibly, while the presence of mesopores results in a combination of type I and IV isotherms. The existence of a hysteresis loop in the isotherms indicates the presence of mesopores while the shape of this hysteresis loop is related to their geometric shape. [Pg.152]

Usually, a hysteresis loop appears because of different adsorption and desorption mechanisms and network or connectivity effects. [Pg.19]


See other pages where Adsorption hysteresis loop is mentioned: [Pg.168]    [Pg.183]    [Pg.168]    [Pg.183]    [Pg.665]    [Pg.665]    [Pg.122]    [Pg.122]    [Pg.3]    [Pg.112]    [Pg.150]    [Pg.154]    [Pg.254]    [Pg.258]    [Pg.260]    [Pg.285]    [Pg.1500]    [Pg.225]    [Pg.405]    [Pg.266]    [Pg.125]    [Pg.173]    [Pg.395]    [Pg.8]    [Pg.295]   
See also in sourсe #XX -- [ Pg.99 ]

See also in sourсe #XX -- [ Pg.435 ]




SEARCH



Adsorption hysteresis loop during

Adsorption hysteresis loop scan

Adsorption isotherms hysteresis loop

Hysteresis

Hysteresis adsorption

Types of Adsorption Isotherms and Hysteresis Loops

© 2024 chempedia.info