Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Adsorbed electrostatic interactions

Just as with interaction energies, II can be regarded as the sum of several components. These include Ilm due to dispersion interaction, Ilf due to electrostatic interactions between charged surfaces, 11 due to overlapping adsorbed layers of neutral... [Pg.247]

Protein adsorption has been studied with a variety of techniques such as ellipsome-try [107,108], ESCA [109], surface forces measurements [102], total internal reflection fluorescence (TIRE) [103,110], electron microscopy [111], and electrokinetic measurement of latex particles [112,113] and capillaries [114], The TIRE technique has recently been adapted to observe surface diffusion [106] and orientation [IIS] in adsorbed layers. These experiments point toward the significant influence of the protein-surface interaction on the adsorption characteristics [105,108,110]. A very important interaction is due to the hydrophobic interaction between parts of the protein and polymeric surfaces [18], although often electrostatic interactions are also influential [ 116]. Protein desorption can be affected by altering the pH [117] or by the introduction of a complexing agent [118]. [Pg.404]

Hydrophilic and Hydrophobic Surfaces. Water is a small, highly polar molecular and it is therefore strongly adsorbed on a polar surface as a result of the large contribution from the electrostatic forces. Polar adsorbents such as most zeoHtes, siUca gel, or activated alumina therefore adsorb water more strongly than they adsorb organic species, and, as a result, such adsorbents are commonly called hydrophilic. In contrast, on a nonpolar surface where there is no electrostatic interaction water is held only very weakly and is easily displaced by organics. Such adsorbents, which are the only practical choice for adsorption of organics from aqueous solutions, are termed hydrophobic. [Pg.252]

When two or more molecular species involved in a separation are both adsorbed, selectivity effects become important because of interaction between the 2eobte and the adsorbate molecule. These interaction energies include dispersion and short-range repulsion energies (( ) and ( )j ), polarization energy (( )p), and components attributed to electrostatic interactions. [Pg.449]

In the absence of dyes, APA- and AdPA-grafted silica bind La(III) with, respectively, 0.20 and 0.27 mmol/g sorption capacity, resulting in formation of 1 2 (La L) complexes. 50% of introduced cation is bonded at pH=5 (APA), pH=6.1 (AdPA) and complete adsorption occurs at pH=6 (APA), pH=6.5 (AdPA). The grafted support in absence of La adsorbs the chosen dyes at pH<4 due to the electrostatic interaction with the -NH, groups on the surface, present as a result of grafting procedure. The adsorption of dyes at pH>4 is insignificant. [Pg.43]

Cationic samples can be adsorbed on the resin by electrostatic interaction. If the polymer is strongly cationic, a fairly high salt concentration is required to prevent ionic interactions. Figure 4.18 demonstrates the effect of increasing sodium nitrate concentration on peak shapes for a cationic polymer, DEAE-dextran. A mobile phase of 0.5 M acetic acid with 0.3 M Na2S04 can also be used. [Pg.112]

In the following paper, the possibility of equilibration of the primarily adsorbed portions of polymer was analyzed [20]. The surface coupling constant (k0) was introduced to characterize the polymer-surface interaction. The constant k0 includes an electrostatic interaction term, thus being k0 > 1 for polyelectrolytes and k0 1 for neutral polymers. It was found that, theoretically, the adsorption characteristics do not depend on the equilibration processes for k0 > 1. In contrast, for neutral polymers (k0 < 1), the difference between the equilibrium and non-equilibrium modes could be considerable. As more polymer is adsorbed, excluded-volume effects will swell out the loops of the adsorbate, so that the mutual reorientation of the polymer chains occurs. [Pg.139]

Figure 8 shows an example of the most common behavior of AEam/0 as a function of adsorbate coverage. Linear behavior, if ever observed, is seen at the air/solution interface.93 At metal/solution interfaces, if chemical interactions with the metal can be ruled out, electrostatic interactions cannot be avoided, and these are responsible for the downward curvature.91 Upward curvatures are often observed at air/solution interfaces as a consequence of lateral interactions.95... [Pg.28]

We start by noting that the Langmuir isotherm approach does not take into account the electrostatic interaction between the dipole of the adsorbate and the field of the double layer. This interaction however is quite important as already shown in section 4.5.9.2. In order to account explicitly for this interaction one can write the adsorption equilibrium (Eq. 6.24) in the form ... [Pg.308]

The stability of colloids can also be dramatically altered by inclusion of polymeric materials. If the polymer interacts favourably with the particle surfaces, i.e. it adsorbs, then both an increase and a reduction in stability is possible, via modification of the electrostatic interaction of the polymer is charged or a reduction in the van der Waals attraction. [Pg.104]

Usually adsorption, i.e. binding of foreign particles to the surface of a solid body, is distinguished as physical and chemical the difference lying in the type of adsorbate - adsorbent interaction. Physical adsorption is assumed to be a surface binding caused by polarization dipole-dipole Van-der-Vaals interaction whereas chemical adsorption, as any chemical interaction, stems from covalent forces with plausible involvement of electrostatic interaction. In contrast to chemisorption in which, as it has been already mentioned, an absorbed particle and adsorbent itself become a unified quantum mechanical system, the physical absorption only leads to a weak perturbation of the lattice of a solid body. [Pg.13]

Gardner 45) has observed the spectrum of Cl atoms adsorbed on a silica-gel surface at 77°K. The experimental results indicate that the orbital degeneracy of the 3p atomic orbital has been removed as a result of the electrostatic interaction with the surface. From the occupancy of the atomic orbitals one would predict that gx >011 — 2.00 and indeed the experimental g values are = 2.012 with g = 2.003. The hyperfine coupling indicates that the impaired electron is highly localized in the 3p orbitals. [Pg.296]


See other pages where Adsorbed electrostatic interactions is mentioned: [Pg.225]    [Pg.34]    [Pg.324]    [Pg.225]    [Pg.34]    [Pg.324]    [Pg.2223]    [Pg.255]    [Pg.396]    [Pg.258]    [Pg.445]    [Pg.105]    [Pg.640]    [Pg.808]    [Pg.808]    [Pg.144]    [Pg.175]    [Pg.308]    [Pg.311]    [Pg.53]    [Pg.94]    [Pg.109]    [Pg.347]    [Pg.349]    [Pg.508]    [Pg.164]    [Pg.460]    [Pg.486]    [Pg.170]    [Pg.12]    [Pg.132]    [Pg.11]    [Pg.206]    [Pg.124]    [Pg.138]    [Pg.448]    [Pg.449]    [Pg.468]    [Pg.397]    [Pg.151]    [Pg.262]   
See also in sourсe #XX -- [ Pg.176 ]




SEARCH



Adsorbate interactions

Interaction adsorbate-adsorbent

Interaction electrostatic

© 2024 chempedia.info