Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Adsorbate definition

Both the basic phosphate and Ca3(P04)2 adsorb definite quantities of Ca(OH)2. These quantities when plotted as functions of the concentrations of Ca(OH)2 have the usual form of adsorption isotherms and therefore give no evidence of the formation of definite compounds, 1 gram of the basic calcium phosphate when in equilibrium with a solution containing 1-099 grams of Ca(OH)2 per litre adsorbs 0-0201 gram of the hydroxide. After 6 months of contact this amount is increased to 0-0243 gram.1... [Pg.219]

A heat of immersion may refer to the immersion of a clean solid surface, qs.imm. or to the immersion of a solid having an adsorbed film on the surface. If the immersion of this last is into liquid adsorbate, we then report qsv.imm if tbe adsorbed film is in equilibrium with the saturated vapor pressure of the adsorbate (i.e., the vapor pressure of the liquid adsorbate P ), we will write It follows from these definitions... [Pg.352]

The quantity zoi will depend very much on whether adsorption sites are close enough for neighboring adsorbate molecules to develop their normal van der Waals attraction if, for example, zu is taken to be about one-fourth of the energy of vaporization [16], would be 2.5 for a liquid obeying Trouton s rule and at its normal boiling point. The critical pressure P, that is, the pressure corresponding to 0 = 0.5 with 0 = 4, will depend on both Q and T. A way of expressing this follows, with the use of the definitions of Eqs. XVII-42 and XVII-43 [17] ... [Pg.614]

A still different approach to multilayer adsorption considers that there is a potential field at the surface of a solid into which adsorbate molecules fall. The adsorbed layer thus resembles the atmosphere of a planet—it is most compressed at the surface of the solid and decreases in density outward. The general idea is quite old, but was first formalized by Polanyi in about 1914—see Brunauer [34]. As illustrated in Fig. XVII-12, one can draw surfaces of equipo-tential that appear as lines in a cross-sectional view of the surface region. The space between each set of equipotential surfaces corresponds to a definite volume, and there will thus be a relationship between potential U and volume 0. [Pg.625]

There are alternative ways of defining the various thermodynamic quantities. One may, for example, treat the adsorbed film as a phase having volume, so that P, V terms enter into the definitions. A systematic treatment of this type has been given by Honig [116], who also points out some additional types of heat of adsorption. [Pg.646]

Adsorbents such as some silica gels and types of carbons and zeolites have pores of the order of molecular dimensions, that is, from several up to 10-15 A in diameter. Adsorption in such pores is not readily treated as a capillary condensation phenomenon—in fact, there is typically no hysteresis loop. What happens physically is that as multilayer adsorption develops, the pore becomes filled by a meeting of the adsorbed films from opposing walls. Pores showing this type of adsorption behavior have come to be called micropores—a conventional definition is that micropore diameters are of width not exceeding 20 A (larger pores are called mesopores), see Ref. 221a. [Pg.669]

L exposure would produce 1 ML of adsorbates if the sticking coefficient were unity. Note that a quantitative calculation of the exposure per surface atom depends on the molecular weight of the gas molecules and on the actual density of surface atoms, but the approximations inlierent in the definition of tire Langmuir are often inconsequential. [Pg.294]

It is useful to define the tenns coverage and monolayer for adsorbed layers, since different conventions are used in the literature. The surface coverage measures the two-dimensional density of adsorbates. The most connnon definition of coverage sets it to be equal to one monolayer (1 ML) when each two-dimensional surface unit cell of the unreconstructed substrate is occupied by one adsorbate (the adsorbate may be an atom or a molecule). Thus, an overlayer with a coverage of 1 ML has as many atoms (or molecules) as does the outennost single atomic layer of the substrate. [Pg.1759]

It is thus tempting to define the first saturated layer as being one monolayer, and this often done, causing some confiision. One therefore also often uses tenns like saturated monolayer to indicate such a single adsorbate layer that has reached its maximal two-dimensional density. Sometimes, however, the word saturated is omitted from this definition, resulting m a different notion of monolayer and coverage. One way to reduce possible confiision is to use, for contrast with the saturated monolayer, the tenn fractional monolayer for the tenn that refers to the substrate unit cell rather than the adsorbate size as the criterion for the monolayer density. [Pg.1759]

Self-assembled monolayers (SAMs) are molecular layers tliat fonn spontaneously upon adsorjDtion by immersing a substrate into a dilute solution of tire surface-active material in an organic solvent [115]. This is probably tire most comprehensive definition and includes compounds tliat adsorb spontaneously but are neither specifically bonded to tire substrate nor have intennolecular interactions which force tire molecules to organize tliemselves in tire sense tliat a defined orientation is adopted. Some polymers, for example, belong to tliis class. They might be attached to tire substrate via weak van der Waals interactions only. [Pg.2620]

When a solid such as charcoal is exposed in a closed space to a gas or vapour at some definite pressure, the solid begins to adsorb the gas and (if the solid is suspended, for example, on a spring balance) by an increase in the weight of the solid and a decrease in the pressure of the gas. After a time the pressure becomes constant at the value p, say, and correspondingly the weight ceases to increase any further. The amount of gas thus adsorbed can be calculated from the fall in pressure by application of the gas laws if the volumes of the vessel and of the solid are known or it can be determined directly as the increase in weight of the solid in the case where the spring balance is used. [Pg.2]

Capacity. Capacity is a measure of the quantity of ions, acid, or base removed (adsorbed) by an ion-exchange material. The quantity removed is direcdy correlated with the number of functional groups. Capacity is reported ia several different ways, but requites further definition because the word by itself does not cover ad situations. Total capacity is a measure of ad the functional groups on a resia and is recorded on a weight as wed as a volume basis. [Pg.377]

The traditional view of emulsion stability (1,2) was concerned with systems of two isotropic, Newtonian Hquids of which one is dispersed in the other in the form of spherical droplets. The stabilization of such a system was achieved by adsorbed amphiphiles, which modify interfacial properties and to some extent the colloidal forces across a thin Hquid film, after the hydrodynamic conditions of the latter had been taken into consideration. However, a large number of emulsions, in fact, contain more than two phases. The importance of the third phase was recognized early (3) and the lUPAC definition of an emulsion included a third phase (4). With this relation in mind, this article deals with two-phase emulsions as an introduction. These systems are useful in discussing the details of formation and destabilization, because of their relative simplicity. The subsequent treatment focuses on three-phase emulsions, outlining three special cases. The presence of the third phase is shown in order to monitor the properties of the emulsion in a significant manner. [Pg.196]

In diying solids it is important to distinguish between hygroscopic and nonhygroscopic materials. If a hygroscopic material is maintained in contact with air at constant temperature and humidity until equilibrium is reached, the material will attain a definite moisture content. This moisture is termed the equilibrium moisture content for the specified conditions. Equilibrium moisture may be adsorbed as a surface film or condensed in the fine capillaries of the solid at reduced pressure, and its concentration will vaiy with the temperature and humidity of the surrounding air. However, at low temperatures, e.g., 15 to 50°C, a plot of equilibrium moisture content versus percent relative humidity is essentially independent of temperature. At zero humidity the equilibrium moisture content of all materials is zero. [Pg.1182]

For exposure of reasons of observable discrepancy of results of the analysis simulated experiment with application synthetic reference samples of aerosols [1]. The models have demonstrated absence of significant systematic errors in results XRF. While results AAA and FMA depend on sort of chemical combination of an elements, method of an ashing of a material and mass of silicic acid remaining after an ashing of samples. The investigations performed have shown that silicic acid adsorbs up to 40 % (rel.) ions of metals. The coefficient of a variation V, describing effect of the indicated factors on results of the analysis, varies %) for Mn and Fe from 5 up to 20, for Cu - from 10 up to 40, for Pb - from 10 up to 70, for Co the ambassador of a dry ashing of samples - exceeds 50. At definition Cr by a method AAA the value V reaches 70 %, if element presences an atmosphere in the form of Cr O. At photometric definition Cr (VI) the value V is equal 40%, when the element is present at aerosols in the form of chromates of heavy metals. [Pg.207]

Where activated carbon is a potential treatment technology, the first evaluation step is generally to run simple isotherms to determine feasibility. Isotherms are based on batch treatment where impurities reach equilibrium on available carbon surface. While such tests provide an indication of the maximum amount of impurity a GAC can adsorb, it cannot give definite scale up data for a GAC operation due to several factors ... [Pg.430]

In order to eharaeterize the dewetting kineties more quantitatively, the time dependenee of the average thiekness of the film and the deerease of adsorbed fraetion Fads(0 with time (Fig. 34) are monitored. The standard interpretation of the behavior of sueh quantities is in terms of power laws, ads(0 with some phenomenologieal exponents. From Fig. 34(a), where sueh power-law behavior is indeed observed, one finds that the exponent a is about 2/3 or 3/4 for small e and then deereases smoothly to a value very elose to zero at the eritieal value e k. —. 2 where the equilibrium adsorbed fraetion F s(l l) starts to be definitely nonzero. If, instead, one analyzes the time dependenee of — F ds(l l) observes a eollapse... [Pg.620]

If, for the purpose of comparison of substrate reactivities, we use the method of competitive reactions we are faced with the problem of whether the reactivities in a certain series of reactants (i.e. selectivities) should be characterized by the ratio of their rates measured separately [relations (12) and (13)], or whether they should be expressed by the rates measured during simultaneous transformation of two compounds which thus compete in adsorption for the free surface of the catalyst [relations (14) and (15)]. How these two definitions of reactivity may differ from one another will be shown later by the example of competitive hydrogenation of alkylphenols (Section IV.E, p. 42). This may also be demonstrated by the classical example of hydrogenation of aromatic hydrocarbons on Raney nickel (48). In this case, the constants obtained by separate measurements of reaction rates for individual compounds lead to the reactivity order which is different from the order found on the basis of factor S, determined by the method of competitive reactions (Table II). Other examples of the change of reactivity, which may even result in the selective reaction of a strongly adsorbed reactant in competitive reactions (49, 50) have already been discussed (see p. 12). [Pg.20]

The preferred kinetic model for the metathesis of acyclic alkenes is a Langmuir type model, with a rate-determining reaction between two adsorbed (complexed) molecules. For the metathesis of cycloalkenes, the kinetic model of Calderon as depicted in Fig. 4 agrees well with the experimental results. A scheme involving carbene complexes (Fig. 5) is less likely, which is consistent with the conclusion drawn from mechanistic considerations (Section III). However, Calderon s model might also fit the experimental data in the case of acyclic alkenes. If, for instance, the concentration of the dialkene complex is independent of the concentration of free alkene, the reaction will be first order with respect to the alkene. This has in fact been observed (Section IV.C.2) but, within certain limits, a first-order relationship can also be obtained from many hyperbolic models. Moreover, it seems unreasonable to assume that one single kinetic model could represent the experimental results of all systems under consideration. Clearly, further experimental work is needed to arrive at more definite conclusions. Especially, it is necessary to investigate whether conclusions derived for a particular system are valid for all catalyst systems. [Pg.168]

These rules must be supplemented by the following two amphoteric rules already discussed in section 2.3.2.1, which supplement the definition of electron acceptor and electron donor adsorbates. [Pg.83]

Figure 6.2. (Top) Definitions of local electrophobic and local electrophilic behaviour for two reactions exhibiting global volcano-type behaviour (a) and global inverted-volcano-type behaviour (b). (Bottom) Corresponding variations in surface coverages of adsorbed electron donor (D) and electron acceptor (A) reactants. As shown in this chapter volcano-type behaviour corresponds in general to high reactant coverages, inverted-volcano-type behaviour corresponds in general to low reactant coverages. Figure 6.2. (Top) Definitions of local electrophobic and local electrophilic behaviour for two reactions exhibiting global volcano-type behaviour (a) and global inverted-volcano-type behaviour (b). (Bottom) Corresponding variations in surface coverages of adsorbed electron donor (D) and electron acceptor (A) reactants. As shown in this chapter volcano-type behaviour corresponds in general to high reactant coverages, inverted-volcano-type behaviour corresponds in general to low reactant coverages.
The only physical difference is that here the current, I, is not directly measurable and thus the dimensionless current density, J, is not directly computable. This difficulty can, however, be overcome if the ratio of the reactivities, A, of normally adsorbed and backspillover oxygen is known (e.g. from electrochemical promotion experiments, where A, as already noted, also expresses the Faradaic efficiency). Thus in this case upon combining the definition of A with equation (11.23) one obtains the following expression for J ... [Pg.507]

Electrode etymology of, 2 potential of, 123 work function of, 138,203, 340 Electron acceptor adsorbate chemical potential of, 208 definition of, 24 isotherm, 309 Electron donor adsorbate chemical potential of, 208 definition of, 24 isotherm, 309... [Pg.569]

Electronegative adsorbate see electron acceptor adsorbate Electrophilic behaviour definition of, 156 examples of, 153, 286 global, 156 local, 157 mles of, 288, 303 Electrophilic reactions definition of, 156 list of, 286... [Pg.569]

The definition of different lubrication regimes is a historic problem [41 ]. In boundary lubrication, molecules will be absorbed on a solid surface of a tribo-pair and form a monomo-lecular absorbed layer as described by Hardy [42] as shown in Fig. 1 (a). If the film thickness of lubricants in the contact region is from a few nanometres to tens of nanometres, different layers will be formed as shown in Fig. 1 (b) proposed by Luo et al. [3,4]. The layer close to the surfaces is the adsorbed film that is a monomolecular layer. The layer in the... [Pg.37]


See other pages where Adsorbate definition is mentioned: [Pg.567]    [Pg.567]    [Pg.391]    [Pg.406]    [Pg.465]    [Pg.914]    [Pg.286]    [Pg.45]    [Pg.2018]    [Pg.95]    [Pg.267]    [Pg.411]    [Pg.857]    [Pg.260]    [Pg.61]    [Pg.63]    [Pg.110]    [Pg.572]    [Pg.240]    [Pg.29]    [Pg.100]    [Pg.397]   
See also in sourсe #XX -- [ Pg.332 ]

See also in sourсe #XX -- [ Pg.6 ]




SEARCH



Adsorbed definition

Adsorbed definition

Adsorbed layer definition

Adsorbent, definition

Adsorbent, definition

Mixed adsorbates, definition

© 2024 chempedia.info