Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Adrene synthesis

Aminoglutethimide [ah me no glue TETH i mide] is useful in second line therapy for the treatment of metastatic breast cancer. It inhibits the adrenal synthesis of pregnenolone from cholesterol, and the extra-adrenal aromatase reaction responsible for the synthesis of estrogen from androstenedione. Aminoglutethimide is administered orally, and is metabolized by the hepatic cytochrome P-450 system to inactive products. Because of its ability to induce this system, its own metabolism is accelerated, and interactions that increase the metabolism of dexamethasone (see p. 275), theophylline (see p. 220) and digoxin (see p. 158) can occur. Aminoglutethimide causes transient CNS depression and a maculopapular rash. [Pg.406]

In addition to the weU-defined opioid systems in the central nervous system, the three opioid peptides and their precursor mRNA have also been identified in peripheral tissues. ( -Endorphin is most abundant in the pituitary, where it exists in corticotroph cells with ACTH in the anterior lobe and in melanotroph cells with MSH in the intermediate lobe (59). Enkephalin and pre-pro-enkephalin mRNA have been identified in the adrenal medulla (60) and this has been the source of material for many studies of pro-enkephalin synthesis and regulation. Pre-pro-enkephalin mRNA has also been identified in the anterior and posterior lobes of the pituitary (61). mRNA for all three opioid precursors has been identified in the reproductive system (62—64). POMC... [Pg.446]

The original commercial source of E was extraction from bovine adrenal glands (5). This was replaced by a synthetic route for E and NE (Eig. 1) similar to the original pubHshed route of synthesis (6). Eriedel-Crafts acylation of catechol [120-80-9] with chloroacetyl chloride yields chloroacetocatechol [99-40-1]. Displacement of the chlorine by methylamine yields the methylamine derivative, adrenalone [99-45-6] which on catalytic reduction yields (+)-epinephrine [329-65-7]. Substitution of ammonia for methylamine in the sequence yields the amino derivative noradrenalone [499-61-6] which on reduction yields (+)-norepinephrine [138-65-8]. The racemic compounds were resolved with (+)-tartaric acid to give the physiologically active (—)-enantiomers. The commercial synthesis of E and related compounds has been reviewed (27). The synthetic route for L-3,4-dihydroxyphenylalanine [59-92-7] (l-DOPA) has been described (28). [Pg.355]

Catecholamine biosynthesis begins with the uptake of the amino acid tyrosine into the sympathetic neuronal cytoplasm, and conversion to DOPA by tyrosine hydroxylase. This enzyme is highly localized to the adrenal medulla, sympathetic nerves, and central adrenergic and dopaminergic nerves. Tyrosine hydroxylase activity is subject to feedback inhibition by its products DOPA, NE, and DA, and is the rate-limiting step in catecholamine synthesis the enzyme can be blocked by the competitive inhibitor a-methyl-/)-tyrosine (31). [Pg.357]

Pregnenolone is transported from the mitochondria to the ER, where a hydroxyl oxidation and migration of the double bond yield progesterone. Pregnenolone synthesis in the adrenal cortex is activated by adrenocorticotropic hormone (ACTH), a peptide of 39 amino acid residues secreted by the anterior pituitary gland. [Pg.848]

It was known for some time that even after the corticoids had been separated from crude extracts of the adrenal cortex, the remaining material, the so-called "amorphous fraction" still possessed considerable mineralocorticoid activity. Aldosterone (250), one of the last steroids to be isolated from this fraction, proved to be the active principle. This compound proved to be an extremely potent agent for the retention of salt, and thus water, in body fluids. An antagonist would be expected to act as a diuretic in those edematous states caused by excess sodium retention. Although aldosterone has been prepared by both total and partial synthesis, the complexity of the molecule discouraged attempts to prepare antagonists based directly on the parent compound. [Pg.206]

Your body contains about 140 g of cholesterol it is synthesized in the liver at the rate of 2 to 3 g/day. Cholesterol is essential to life for two reasons. It is a major component of all cell membranes, and it serves as the starting material tor the synthesis of sex hormones, adrenal hormones, bile acids, and vitamin D. [Pg.603]

CRH (Corticotropin releasing hormone) is expressed in the nucleus paraventricularis of the hypothalamus and drives the stress hormone system by activating synthesis and release of corticotropin at the pituitary and in turn corticosteroid from the adrenal cortex. CRH is also expressed at many other brain locations not involved in neuroendocrine regulation, e.g. the prefrontal cortex and the amygdala. Preclinical studies have shown that CRH also coordinates the behavioral adaptation to stress (e.g. anxiety, loss of appetite, decreased sleepiness, autonomic changes, loss of libido). [Pg.397]

Cortisol synthesis requires three hydroxylases located in the fasciculata and reticularis zones of the adrenal cortex that act sequentially on the Cjy, C21, and Cjj positions. The first two reactions are rapid, while Cu hydroxylation is relatively slow. If the C, position is hydroxylated first, the action of 17a-hydroxylase is impeded and the mineralocorticoid pathway is followed (forming corti-... [Pg.440]

PNMT catalyzes the N-methylation of norepinephrine to form epinephrine in the epinephrine-forming cells of the adrenal medulla. Since PNMT is soluble, it is assumed that norepinephrine-to-epinephrine conversion occurs in the cytoplasm. The synthesis of PNMT is induced by glucocorticoid hormones that reach the medulla via the intra-adrenal portal system. This special system provides for a 100-fold steroid concentration gradient over systemic arterial blood, and this high intra-adrenal concentration appears to be necessary for the induction of PNMT. [Pg.447]

Dopamine (5-hydroxylase is a copper-containing enzyme involved in the synthesis of the catecholamines norepinephrine and epinephrine from tyrosine in the adrenal medulla and central nervous system. During hy-droxylation, the Cu+ is oxidized to Cu " reduction back... [Pg.495]

All these steroids disappear from the brain in animals after removal of the adrenals or gonads (ovary and testis). This also applies to tetrahydrodeoxycorticosterone for although it is formed by reduction of deoxycorticosterone within the brain, its synthesis depends on that steroid coming from the blood. [Pg.272]

Non-neuronal transplants such as adrenal chromaffin cells have been tried but do not survive although some L-dopa-producing cell lines (e.g. PC 12) or glomus cells of the carotid body do produce DA in vivo and may provide the equivalent of a continuous infusion of dopa (and DA) directly into the brain. Expression of tyrosine hydroxylase to promote dopa and DA synthesis in striatal cells by direct gene transfer in vivo or in cultures for subsequent transplanting, may also be possible. (See Dunnett and Bjorklund 1999 for a review of these approaches.)... [Pg.319]

Kogan, F.J., and Gibb, J.W. Influence of dopamine synthesis on methamphetamine-induced changes in striatal and adrenal tyrosine hydroxylase activity. N-S Arch Pharmacol 310 185-187, 1979. [Pg.177]

The adrenal glands are important in the synthesis and regulation of key hormones. They play a crucial role in water and electrolyte homeostatsis, as well as regulation of blood pressure, carbohydrate and fat metabolism, physiologic response to stress, and sexual development and differentiation. This chapter focuses on pharmacologic and nonpharmacologic management of the two most common conditions associated... [Pg.685]

Adrenal steroid synthesis. The adrenal cortex consists of three histologically distinct zones the zona glomerulosa, zona fasciculata, and an innermost layer called the zona reticularis. Each zone is responsible for production of different hormones. (17 =... [Pg.686]

The zona glomerulosa is responsible for the production of the mineralocorticoids aldosterone, deoxycorticosterone, and 18-hydroxy-deoxycorticosterone. Aldosterone promotes renal sodium retention and excretion of potassium. Its synthesis and release are regulated by renin in response to decreased vascular volume and renal perfusion. Adrenal aldosterone production is regulated by the renin-angiotensin-aldosterone system. [Pg.687]

Adrenal hormone production is controlled by the hypothalamus and pituitary gland. Corticotropin-releasing hormone (CRH) is secreted by the hypothalamus and stimulates secretion of adrenocorticotropic hormone (ACTH), also known as corticotropin from the anterior pituitary. ACTH, in turn, stimulates the adrenal cortex to produce cortisol. When sufficient or excessive cortisol levels are reached, a negative feedback is exerted on the secretion of CRH and ACTH, thereby decreasing overall cortisol production. The control of adrenal androgen synthesis also follows a similar negative-feedback mechanism. [Pg.687]

Secondary adrenal insufficiency occurs as a result of a pituitary gland dysfunction whereby decreased production and secretion of ACTH leads to a decrease in cortisol synthesis. Tertiary adrenal insufficiency is a disorder of the hypothalamus that results in decreased production and release of CRH, which, in turn, decreases pituitary ACTH production and release. In contrast to Addison s disease (i.e., primary adrenal insufficiency), aldosterone production is unaffected in the secondary and tertiary forms of the disease. Chronic adrenal insufficiency often has a good prognosis if diagnosed early and treated appropriately. [Pg.688]

The testes and adrenal glands produce 90% and 10%, respectively, of circulating testosterone. Testosterone enters prostate cells, where predominantly type II 5a-reductase activates testosterone to dihydrotestosterone, which combines with a cytoplasmic receptor. The complex enters the nucleus and induces changes in protein synthesis which promote glandular tissue growth of the prostate. Thus, 5a-reductase inhibitors (e.g., finasteride and dutas-teride) directly interfere with one of the major etiologic factors of BPH. [Pg.792]


See other pages where Adrene synthesis is mentioned: [Pg.439]    [Pg.1305]    [Pg.439]    [Pg.1305]    [Pg.175]    [Pg.224]    [Pg.578]    [Pg.414]    [Pg.354]    [Pg.42]    [Pg.760]    [Pg.849]    [Pg.849]    [Pg.43]    [Pg.539]    [Pg.545]    [Pg.609]    [Pg.341]    [Pg.269]    [Pg.6]    [Pg.166]    [Pg.215]    [Pg.437]    [Pg.438]    [Pg.441]    [Pg.170]    [Pg.170]    [Pg.99]    [Pg.697]   


SEARCH



Adrenal androgens synthesis

Adrenal cortical hormones synthesis

Adrenal gland synthesis

Adrenal steroids cholesterol synthesis

Adrenal steroids, synthesis

Adrenal tissue catecholamine synthesis

Adrenal tissue cortisol synthesis

Adrenalitis

Adrene

© 2024 chempedia.info