Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

ADMET catalysts

An alternative, and more recent, approach is shown in reaction (42).9091 Here, a cyclophosphazene is synthesized with two non-geminal alkoxy chains that bear terminal olefinic groups. Treatment of these compounds with an organometallic ADMET catalyst causes loss of ethylene and formation of a cyclolinear polymer. The chain lengths achieved by this method are generally longer than those produced by the dehydrohalo-genation technique. [Pg.91]

A special step polymerization involves an acyclic diene methathesis polymerization, ADMET [12]. A diene, CH2=CH(-CH2) -CH=CH2, sets up a condensation equilibrium, evolving ethylene in the presence of an ADMET catalyst and allows polymerization. Substituted dienes can produce precisely branched polymers [13]. [Pg.197]

We tested the homogeneous carbyne complex Cl3(dme)W=CtBu (A) and heterogeneous catalyst Si02/Np2W=CH Bu (D) as ADMET catalysts for dienes [8]. The heterogeneous catalyst produced with 1,9-decadiene or with l,3-di(5-hexenyl)-1,1,3,3-tetramethyldisiloxane) polyalkenameres with higher molecular weights [7], Table 6. [Pg.326]

Acyclic diene molecules are capable of undergoing intramolecular and intermolec-ular reactions in the presence of certain transition metal catalysts molybdenum alkylidene and ruthenium carbene complexes, for example [50, 51]. The intramolecular reaction, called ring-closing olefin metathesis (RCM), affords cyclic compounds, while the intermolecular reaction, called acyclic diene metathesis (ADMET) polymerization, provides oligomers and polymers. Alteration of the dilution of the reaction mixture can to some extent control the intrinsic competition between RCM and ADMET. [Pg.328]

These limitations were overcome with the introduction of the well-defined, single-component tungsten and molybdenum (14) alkylidenes in 1990. (Fig. 8.4).7 Schrock s discoveiy revolutionized the metathesis field and vastly increased die utility of this reaction. The Schrock alkylidenes are particularly reactive species, have no side reactions, and are quite effective as polymerization catalysts for both ROMP and ADMET. Due to the oxophilicity of molybdenum, these alkylidenes are moisture and air sensitive, so all reactions using these catalysts must be performed under anaerobic conditions, requiring Schlenk and/or glovebox techniques. [Pg.433]

Figure 8.3 Wagener s ADMET of 1,9-decadiene using Schrock s [W] catalyst. Figure 8.3 Wagener s ADMET of 1,9-decadiene using Schrock s [W] catalyst.
ADMET of av j-dicncs has been a focus of research in the Wagener laboratories for many years now, where we have studied this chemistry to explore its viability in synthesizing polymers possessing both precisely designed microstructures as well as a variety of functionalities. The requirements for this reaction, such as steric and electronic factors, functionalities allowed, appropriate choice of catalyst, and necessary length or structure of the diene, have been examined.3,12-14 A detailed discussion will be presented later in this chapter with a brief synopsis of general rules for successful ADMET polymerization presented here. [Pg.434]

ADMET is quite possibly the most flexible transition-metal-catalyzed polymerization route known to date. With the introduction of new, functionality-tolerant robust catalysts, the primary limitation of this chemistry involves the synthesis and cost of the diene monomer that is used. ADMET gives the chemist a powerful tool for the synthesis of polymers not easily accessible via other means, and in this chapter, we designate the key elements of ADMET. We detail the synthetic techniques required to perform this reaction and discuss the wide range of properties observed from the variety of polymers that can be synthesized. For example, branched and functionalized polymers produced by this route provide excellent models (after quantitative hydrogenation) for the study of many large-volume commercial copolymers, and the synthesis of reactive carbosilane polymers provides a flexible route to solvent-resistant elastomers with variable properties. Telechelic oligomers can also be made which offer an excellent means for polymer modification or incorporation into block copolymers. All of these examples illustrate the versatility of ADMET. [Pg.435]

As is die case for odier polycondensation reactions, internal interchange reactions are possible for ADMET, similar to diat of polyesters and polyamides.16 Interchange reactions involve a catalyst molecule on a polymer chain end reacting widi an internal double bond in another polymer chain. The result is two new polymer chains however, no change in the molecular weight distribution... [Pg.437]

The obviation of side reactions is essential to the success of ADMET, and this can be realized if the proper catalyst is chosen. Catalyst choice must avoid the possibility of cation formation,13 vinyl addition, and/or formation of multiple catalytic species, all of which are detrimental to clean metathesis chemistry. Over the past 10 years, our group has utilized a variety of different catalysts, several of which are illustrated in Fig. 8.4. [Pg.438]

The two most commonly used single-site catalysts for ADMET today are (1) Schrock s alkylidene catalysts of the type M(CHR )(NAr )(OR)2 where M = W or Mo, AC = 2, 6-C6H3-/-Pr2, R = CMe2Ph, and R = CMe(CF3)2 (14)7 and (2) Grubbs ruthenium-based catalyst, RuCl2(=CHPh)(PCy3)2 (12) where Cy = cyclohexyl.9 While both catalysts meet the requirements to be successful in ADMET, they are markedly different in their reactivity and in die results each can produce. [Pg.438]

The successful polymerization of a, >-dienes via ADMET continually produces a small molecule, typically ethylene, and the removal of this small molecule drives the reaction. When Schrock s [W] and [Mo] alkylidenes (14) are used, care has to be taken in maintaining an inert atmosphere devoid of both moisture and air in order to avoid decomposition of the catalyst. For this reason, Schlenk line techniques such as those used to handle Ziegler-Natta or metallocene catalysts and high purity monomers are important. [Pg.439]

Another example of the flexibility of ADMET is the demonstration of successful polymerization of o /v-telechelic diene carbosilane macromonomers.45 The synthesis of macromonomer 30 is achieved using catalyst 23 and copolymerized with a rigid small-molecule diene, 4,4/-di-trans-l-propenylbiphenyl (Fig. 8.17). [Pg.453]

Another class of silicon-containing polymers that have great potential to be extremely useful precursor materials are poly(chlorocarbosilanes).14f 46 Poly (chlorocarbosilanes) are not useful without modification because of the rapid hydrolysis of Si—Cl bonds, forming HC1 and an insoluble crosslinked polymer network. However, nucleophilic substitution of these Si—Cl bonds with various reagents produces materials widi a broad range of properties that are determined by the nature of the nucleophile used.47 Poly(chlorocarbosilanes) can be easily synthesized by ADMET (Fig. 8.18) without any detrimental side reactions, since the Si—Cl bond is inert to both catalysts 12 and 14. Early studies produced a polymer with Mn = 3000.14f... [Pg.454]

Other groups such as esters, silylethers, and imides are also successfully incorporated through ADMET depolymerization with 14 (Fig. 8.21).49 For an ester functionality, at least two methylene spacer units must be present between die olefin site and die functional group in order to achieve depolymerization. This is due to die negative neighboring group effect, a deactivation of the catalyst by coordination of the functionality heteroatoms to die catalyst.50 By physically... [Pg.456]

CASE (coatings, adhesives, sealants, and elastomers) catalysts, 235 Cast elastomers, 201, 203-204, 248-249 spray and rotational, 204 Catalysis. See also Catalysts ADMET, 435-445 depolymerization and, 545-558 by Lewis acids and metal alkoxides, 68-69... [Pg.579]

Polylactides, 18 Poly lactones, 18, 43 Poly(L-lactic acid) (PLLA), 22, 41, 42 preparation of, 99-100 Polymer age, 1 Polymer architecture, 6-9 Polymer chains, nonmesogenic units in, 52 Polymer Chemistry (Stevens), 5 Polymeric chiral catalysts, 473-474 Polymeric materials, history of, 1-2 Polymeric MDI (PMDI), 201, 210, 238 Polymerizations. See also Copolymerization Depolymerization Polyesterification Polymers Prepolymerization Repolymerization Ring-opening polymerization Solid-state polymerization Solution polymerization Solvent-free polymerization Step-grown polymerization processes Vapor-phase deposition polymerization acid chloride, 155-157 ADMET, 4, 10, 431-461 anionic, 149, 174, 177-178 batch, 167 bulk, 166, 331 chain-growth, 4 continuous, 167, 548 coupling, 467 Friedel-Crafts, 332-334 Hoechst, 548 hydrolytic, 150-153 influence of water content on, 151-152, 154... [Pg.597]

Wolfe and Wagener have developed main-chain boronate polymers (59) (Fig. 38) by the acyclic diene metathesis (ADMET) polymerization of symmetrical ,oj-dienes, containing both methyl- and phenyl-substituted boronate functionalities using Mo and Ru catalysts.84 The ring-opening metathesis polymerization (ROMP) of several norbornene monomers containing methyl- and phenyl-substituted boronates into... [Pg.45]

Poly(l,4-naphthylenevinylenes) have been prepared by metathesis polymerization of benzobarrelenes [181,182] and the photoluminescence properties of homopolymers and block-copolymers have been studied in some detail [183]. PPV also has been prepared via ROMP of [2.2]paracyclophane-l,9-diene [184] and ROMP of a paracyclophene that contains a solubilizing leaving group [185]. The resulting polymer is converted to PPV upon acid catalysis at room temperature. ADMET of 2,5-dialkyl-l,4-divinylbenzenes using Mo or W catalysts has... [Pg.31]

The formation of rings that contain a thioether linkage does not appear to be catalyzed efficiently by Ru, even when terminal olefins are present. On the other hand, molybdenum appears to work relatively well, as shown in Eqs. 30 [207] and 31 [208]. Under some conditions polymerization (ADMET) to give poly-thioethers is a possible alternative [26]. Aryloxide tungsten catalysts have also been employed successfully to prepare thioether derivatives [107,166,169]. Apparently the mismatch between a hard earlier metal center and a soft sulfur donor is what allows thioethers to be tolerated by molybdenum and tungsten. Similar arguments could be used to explain why cyclometalated aryloxycarbene complexes of tungsten have been successfully employed to prepare a variety of cyclic olefins such as the phosphine shown in Eq. 32 [107,193]. [Pg.34]


See other pages where ADMET catalysts is mentioned: [Pg.454]    [Pg.199]    [Pg.199]    [Pg.5]    [Pg.210]    [Pg.454]    [Pg.199]    [Pg.199]    [Pg.5]    [Pg.210]    [Pg.13]    [Pg.321]    [Pg.322]    [Pg.10]    [Pg.432]    [Pg.433]    [Pg.435]    [Pg.440]    [Pg.441]    [Pg.441]    [Pg.446]    [Pg.450]    [Pg.455]    [Pg.456]    [Pg.461]    [Pg.575]    [Pg.498]    [Pg.578]    [Pg.53]    [Pg.12]    [Pg.23]    [Pg.32]    [Pg.39]    [Pg.191]   
See also in sourсe #XX -- [ Pg.373 ]




SEARCH



ADMET

© 2024 chempedia.info