Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Adenine reduction

Derivation Deamination of adenine, reduction of uric acid. [Pg.680]

A few years ago the calculation of spin densities and hyperfine couplings on even small molecules was a very challenging task. Colson et al. reported the spin densities, computed at the 6-31G //3-21G level, for the anions and cations of the four DNA bases. Their results correctly indicated the majors regions of spin density. For example, the major sites of spin density for the adenine reduction product were computed to be p(C2) = 0.71, p(C8) = 0.03, and p(N3) = 0.08. While these are the sites of spin density expected for an adenine reduction product, these results are not very close to the experimentally determined spin densities of p(C2) = 0.41, p(C8) = 0.14, and p(N3) = 0.12. The numbering scheme used here is as shown. [Pg.210]

Table VIII Hyperfine Coupling Parameters for Adenine Reduction Products... Table VIII Hyperfine Coupling Parameters for Adenine Reduction Products...
A-tetrad 188 absorption 62 AcesII program 142 acid-base pairs 152 adenine 162, 186 adenine oxidation products 235 adenine reduction products 233 alanine 24... [Pg.345]

Nicotinamide, (S)-N-(a-methylbenzyl)-hydrogen bonding, 2, 111 Nicotinamide, N-phenyl-hydrogen bonding, 2, 111 Nicotinamide adenine dinucleotide in biochemical pathways, 1, 248 coenzyme system with NADH, 2, 121 reactions, 2, 382 reduction, 2, 281, 283... [Pg.710]

In oiological systems, the most frequent mechanism of oxidation is the remov of hydrogen, and conversely, the addition of hydrogen is the common method of reduc tion. Nicotinamide-adenine dinucleotide (NAD) and nicotinamide-adenine dinucleotide phosphate (NADP) are two coenzymes that assist in oxidation and reduction. These cofactors can shuttle between biochemical reac tions so that one drives another, or their oxidation can be coupled to the formation of ATP. However, stepwise release or consumption of energy requires driving forces and losses at each step such that overall efficiency suffers. [Pg.2133]

Ammonia reacts with the ketone carbonyl group to give an iinine (C=NH), which is then reduced to the anine function of the a-anino acid. Both iinine fonnation and reduction are enzyme-catalyzed. The reduced fonn of nicotinamide adenine diphosphonu-cleotide (NADPH) is a coenzyme and acts as a reducing agent. The step in which the iinine is reduced is the one in which the chirality center is introduced and gives only L-glutfflnic acid. [Pg.1124]

Nicotinamide is an essential part of two important coenzymes nicotinamide adenine dinucleotide (NAD ) and nicotinamide adenine dinucleotide phosphate (NADP ) (Figure 18.19). The reduced forms of these coenzymes are NADH and NADPH. The nieotinamide eoenzymes (also known as pyridine nucleotides) are electron carriers. They play vital roles in a variety of enzyme-catalyzed oxidation-reduction reactions. (NAD is an electron acceptor in oxidative (catabolic) pathways and NADPH is an electron donor in reductive (biosynthetic) pathways.) These reactions involve direct transfer of hydride anion either to NAD(P) or from NAD(P)H. The enzymes that facilitate such... [Pg.588]

In living organisms, aldehyde and ketone reductions are carried out by either of the coenzymes NADH (reduced nicotinamide adenine dinucleotide) or NADPH (reduced nicotinamide adenine dinucleotide phosphate). Although... [Pg.610]

This thiol-disulfide interconversion is a key part of numerous biological processes. WeTJ see in Chapter 26, for instance, that disulfide formation is involved in defining the structure and three-dimensional conformations of proteins, where disulfide "bridges" often form cross-links between q steine amino acid units in the protein chains. Disulfide formation is also involved in the process by which cells protect themselves from oxidative degradation. A cellular component called glutathione removes potentially harmful oxidants and is itself oxidized to glutathione disulfide in the process. Reduction back to the thiol requires the coenzyme flavin adenine dinucleotide (reduced), abbreviated FADH2. [Pg.668]

The first step in the biological degradation of lysine is reductive animation with a-ketoglutarate to give saccharopine. Nicotinamide adenine dinucleotide phosphate (NADPH), a relative of NADH, is the reducing agent. Show the mechanism. [Pg.1059]

Newman, Melvin S., 93 Newman projection, 93 molecular model of, 93 Nicotinamide adenine dinucleotide, biological oxidations with, 625-626 reactions of, 725 structure of, 725, 1044 Nicotinamide adenine dinucleotide (reduced), biological reductions with, 610-611... [Pg.1308]

Several other electron-transfer reagents have been tested with arenediazonium ions, for example, A-benzyl-l,4-dihydronicotinamide, which is a model for biochemical reductions by NAD(P)H, the reduced form of NADP+ (nicotinamide adenine cfinucleotide phosphate) (Yasui et al., 1984). [Pg.195]

Polypyrrole shows catalytic activity for the oxidation of ascorbic acid,221,222 catechols,221 and the quinone-hydroquinone couple 223 Polyaniline is active for the quinone-hydroquinone and Fe3+/Fe2+ couples,224,225 oxidation of hydrazine226 and formic acid,227 and reduction of nitric acid228 Poly(p-phenylene) is active for the oxidation of reduced nicotinamide adenine dinucleotide (NADH), catechol, ascorbic acid, acetaminophen, and p-aminophenol.229 Poly(3-methylthiophene) catalyzes the electrochemistry of a large number of neurotransmitters.230... [Pg.588]

Reduced nicotinamide-adenine dinucleotide (NADH) plays a vital role in the reduction of oxygen in the respiratory chain [139]. The biological activity of NADH and oxidized nicotinamideadenine dinucleotide (NAD ) is based on the ability of the nicotinamide group to undergo reversible oxidation-reduction reactions, where a hydride equivalent transfers between a pyridine nucleus in the coenzymes and a substrate (Scheme 29a). The prototype of the reaction is formulated by a simple process where a hydride equivalent transfers from an allylic position to an unsaturated bond (Scheme 29b). No bonds form between the n bonds where electrons delocalize or where the frontier orbitals localize. The simplified formula can be compared with the ene reaction of propene (Scheme 29c), where a bond forms between the n bonds. [Pg.50]

For the majority of redox enzymes, nicotinamide adenine dinucleotide [NAD(H)j and its respective phosphate [NADP(H)] are required. These cofactors are prohibitively expensive if used in stoichiometric amounts. Since it is only the oxidation state of the cofactor that changes during the reaction, it may be regenerated in situ by using a second redox reaction to allow it to re-enter the reaction cycle. Usually in the heterotrophic organism-catalyzed reduction, formate, glucose, and simple alcohols such as ethanol and 2-propanol are used to transform the... [Pg.52]

Figure 18.2 Summary of respiratory energy flows. Foods ate converted into the reduced form of nicotinamide adenine dinucleotide (NADH), a strong reductant, which is the most reducing of the respiratory electron carriers (donors). Respiration can he based on a variety of terminal oxidants, such as O2, nitrate, or fumarate. Of those, O2 is the strongest, so that aerobic respiration extracts the largest amount of free energy from a given amount of food. In aerobic respiration, NADH is not oxidized directly by O2 rather, the reaction proceeds through intermediate electron carriers, such as the quinone/quinol couple and cytochrome c. The most efficient respiratory pathway is based on oxidation of ferrocytochrome c (Fe ) with O2 catalyzed by cytochrome c oxidase (CcO). Of the 550 mV difference between the standard potentials of c)Tochrome c and O2, CcO converts 450 mV into proton-motive force (see the text for further details). Figure 18.2 Summary of respiratory energy flows. Foods ate converted into the reduced form of nicotinamide adenine dinucleotide (NADH), a strong reductant, which is the most reducing of the respiratory electron carriers (donors). Respiration can he based on a variety of terminal oxidants, such as O2, nitrate, or fumarate. Of those, O2 is the strongest, so that aerobic respiration extracts the largest amount of free energy from a given amount of food. In aerobic respiration, NADH is not oxidized directly by O2 rather, the reaction proceeds through intermediate electron carriers, such as the quinone/quinol couple and cytochrome c. The most efficient respiratory pathway is based on oxidation of ferrocytochrome c (Fe ) with O2 catalyzed by cytochrome c oxidase (CcO). Of the 550 mV difference between the standard potentials of c)Tochrome c and O2, CcO converts 450 mV into proton-motive force (see the text for further details).
Fisher, J. Ramakrishnan, K. Becvar, J. E. Direct enzyme-catalyzed reduction of anthra-cyclines by reduced nicotinamide adenine dinucleotide. Biochemistry 1983, 22, 1347-1355. [Pg.264]

The most important product of the hexose monophosphate pathway is reduced nicotinamide-adenine dinucleotide phosphate (NADPH). Another important function of this pathway is to provide ribose for nucleic acid synthesis. In the red blood cell, NADPH is a major reducing agent and serves as a cofactor in the reduction of oxidized glutathione, thereby protecting the cell against oxidative attack. In the syndromes associated with dysfunction of the hexose monophosphate pathway and glutathione metabolism and synthesis, oxidative denaturation of hemoglobin is the major contributor to the hemolytic process. [Pg.2]

One-electron oxidation of the adenine moiety of DNA and 2 -deoxyadenos-ine (dAdo) (45) gives rise to related purine radical cations 46 that may undergo either hydration to generate 8-hydroxy-7,8-dihydroadenyl radicals (47) or deprotonation to give rise to the 6-aminyl radicals 50. The formation of 8-oxo-7,8-dihydro-2 -deoxyadenosine (8-oxodAdo) (48) and 4,6-diamino-5-formamidopyrimidine (FapyAde) (49) is likely explained in terms of oxidation and reduction of 8-hydroxy-7,8-dihydroadenyl precursor radicals 47, respectively [90]. Another modified nucleoside that was found to be generated upon type I mediated one-electron oxidation of 45 by photoexcited riboflavin and menadione is 2 -deoxyinosine (51) [29]. The latter nucleoside is likely to arise from deamination of 6-aminyl radicals (50). Overall, the yield of formation of 8-oxodAdo 48 and FapyAde 49 upon one-electron oxidation of DNA is about 10-fold-lower than that of 8-oxodGuo 44 and FapyGua 43, similar to OH radical mediated reactions [91]. [Pg.23]

Although the reduction potentials argue for thymine, as the most easily reducable base in protic solvents like water, subsequent protonation reactions need to be considered as well. The coupling of single electron reduction with a subsequent protonation step will strongly affect the ease of single electron reduction. Table 2 contains the pKa-values of some nucleobases in their reduced and neutral states [37]. It is clear that the thymine radical anion, due to its rather neutral pKa-value of about 7 is unlikely to become pro-tonated either by water or by the adenine counter base in the DNA strand. [Pg.202]


See other pages where Adenine reduction is mentioned: [Pg.519]    [Pg.233]    [Pg.260]    [Pg.519]    [Pg.233]    [Pg.260]    [Pg.176]    [Pg.274]    [Pg.28]    [Pg.74]    [Pg.591]    [Pg.270]    [Pg.808]    [Pg.724]    [Pg.1044]    [Pg.1074]    [Pg.371]    [Pg.120]    [Pg.865]    [Pg.389]    [Pg.212]    [Pg.176]    [Pg.171]    [Pg.585]    [Pg.4]    [Pg.204]    [Pg.639]    [Pg.233]    [Pg.251]    [Pg.22]    [Pg.286]    [Pg.52]    [Pg.78]   
See also in sourсe #XX -- [ Pg.709 ]




SEARCH



Adenine electrochemical reduction

Flavin adenine dinucleotide reductase reduction

Flavin adenine dinucleotide reduction

NADP+ (nicotinamide adenine dinucleotide reduction

Nicotinamide adenine dinucleotide biological reductions with

Nicotinamide adenine dinucleotide phosphate NADP)-NADPH reduction

Nicotinamide adenine dinucleotide reduced), biological reduction with

Nicotinamide adenine dinucleotide reduced), biological reductions

Nicotinamide adenine dinucleotide reduction

Nicotinamide adenine dinucleotide reduction of pyruvic acid

Nicotinamide adenine dinucleotide reduction with

Nicotine adenine dinucleotide reduction

Reduction of Adenine and Cytosine Residues

© 2024 chempedia.info