Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Additives Pauson-Khand reaction

A combination of a metathesis and a Pauson-Khand reaction, which leads to tricyclic compounds starting from diene-ynes, has been described by Perez-Castells and colleagues [262]. Treatment of the Co-complex 6/3-86, obtained from the corresponding alkyne in 75 % yield, with 5 mol% of the Ru-catalyst 6/3-13 for 18 h, followed by addition of an N-oxide as trimethylamine-N-oxide (TMANO) or NMO as copromoters, gave 6/3-87 in 81% yield. [Pg.453]

The [2+2+1] cycloaddition of an alkene, an alkyne, and carbon monoxide is known as the Pauson-Khand reaction and is often the method of choice for the preparation of complex cyclopentenones [155]. Groth and coworkers have demonstrated that Pauson-Khand reactions can be carried out very efficiently under microwave heating conditions (Scheme 6.75 a) [156]. Taking advantage of sealed-vessel technology, 20 mol% of dicobalt octacarbonyl was found to be sufficient to drive all of the studied Pauson-Khand reactions to completion, without the need for additional carbon monoxide. The carefully optimized reaction conditions utilized 1.2 equivalents of... [Pg.159]

Abstract The transition metal mediated conversion of alkynes, alkenes, and carbon monoxide in a formal [2 + 2+1] cycloaddition process, commonly known as the Pauson-Khand reaction (PKR), is an elegant method for the construction of cyclopentenone scaffolds. During the last decade, significant improvements have been achieved in this area. For instance, catalytic PKR variants are nowadays possible with different metal sources. In addition, new asymmetric approaches were established and the reaction has been applied as a key step in various total syntheses. Recent work has also focused on the development of CO-free conditions, incorporating transfer carbonylation reactions. This review attempts to cover the most important developments in this area. [Pg.172]

The key step employed a rhodium(l)-catalysed allenic Pauson-Khand reaction to generate the tricyclic ring system 276 from the allenyne 275. However, all attempts to introduced the missing methyl group by a 1,4-addition protocol failed to provide the completed neodolastane framework. Allenyne 275 was synthesized from the enone 274 by a multistep procedure. The quaternary atom was constructed by sequential enolate alkylations. [Pg.131]

The asymmetric reactions discussed in this chapter may be divided into three different types of reaction, as (1) hydrometallation of olefins followed by the C—C bond formation, (2) two C C bond formations on a formally divalent carbon atom, and (3) nucleophilic addition of cyanide or isocyanide anion to a carbonyl or its analogs (Scheme 4.1). For reaction type 1, here described are hydrocarbonyla-tion represented by hydroformylation and hydrocyanation. As for type 2, Pauson-Khand reaction and olefin/CO copolymerization are mentioned. Several nucleophilic additions to aldehydes and imines (or iminiums) are described as type 3. [Pg.101]

Several reports have appeared on the effect of additives on the Pauson-Khand reaction employing an alkyne-Co2(CO)6 complex. For example, addition of phosphine oxide improves the yields of cyclopentenones 119], while addition of dimethyl sulfoxide accelerates the reaction considerably [20]. Furthermore, it has been reported that the Pauson-Khand reaction proceeds even at room temperature when a tertiary amine M-oxide, such as trimethylamine M-oxide or N-methylmorpholine M-oxide, is added to the alkyne-Co2(CO)6 complex in the presence of alkenes [21]. These results suggest that in the Pauson-Khand reaction generation of coordinatively unsaturated cobalt species by the attack of oxides on the carbonyl ligand of the alkyne-Co2(CO)6 complex [22] is the key step. With this knowledge in mind, we examined further the effect of various other additives on the reaction to obtain information on the mechanism of this rearrangement. [Pg.78]

One approach to tetrahydropyridinones is the Lewis acid mediated hetero-Diels-Alder reaction of electron-rich dienes with polystyrene-bound imines (Entries 3 and 4, Table 15.23). The Ugi reaction of 5-oxo carboxylic acids and primary amines with support-bound isonitriles has been used to prepare piperidinones on insoluble supports (Entry 5, Table 15.23). Entry 6 in Table 15.23 is an example of the preparation of a 4-piperidinone by amine-induced 3-elimination of a resin-bound sulfinate followed by Michael addition of the amine to the newly generated divinyl ketone. The intramolecular Pauson-Khand reaction of propargyl(3-butenyl)amines, which yields cyclopenta[c]pyridin-6-ones, is depicted in Table 12.4. [Pg.431]

The [2+2+1] cycloaddition of an alkene, an alkyne and carbon monoxide is commonly known as the Pauson-Khand reaction. This transformation has been adopted many times in the synthesis of complex natural products and related compounds, which contain a cyclopentenone moiety, for example, prostaglandins. Two independent reports of this reaction appeared almost simultaneously in late 2002 by Iqbal and co-workers25 and Fisher and co-workers26, respectively. They not only used very similar substrate systems in their studies, but they also reached very similar conclusions Toluene was found to be the preferred solvent in this reaction, even though it is a very poor microwave absorber. A reaction time between 5 and 10 min, using dicob alto ctacar-bonyl or dicobalthexacarbonyl as the carbon monoxide source, and a temperature of 100-120°C resulted in high yields of the products. Fisher and co-workers used 20 mol% Co2(CO)8 and cyclohexylamine as an additive (Scheme 5.12), since this system had been used previously in order to allow a catalytic reaction. Iqbal and co-workers did not use cyclohexylamine, but instead used 1 equiv. of the carbon monoxide (Co2(CO)6) source. In both reports, the products were formed in 40-70% yield. [Pg.112]

Electron-deficient acetylenes, silylformylation, 11, 483 Electron-deficient substrates, Pauson—Khand reaction, 11,353 Electron-deficient unsaturated bonds boron conjugate additions, 9, 214 cycloadditions to, 9, 314... [Pg.101]

A further addition-cyclization process that leads to complex fused-ring systems is the dicobalt octacarbonyl-mediated Pauson-Khand reaction which, applied to enynes 209 and 211, gives respectively and in modest yields the tricyclic cyclopentenones 210215 and 212.216... [Pg.95]

Some of the most exciting reactions in organic chemistry are based on transition metals. How about these two for example The first is the Heck reaction, which allows nucleophilic addition to an unactivated alkene. Catalytic palladium (Pd) is needed to make the reaction go. The second, the Pauson-Khand reaction, is a special method of making five-membered rings from three components an alkene, an alkyne, and carbon monoxide (CO). It requires cobalt (Co). Neither of these reactions is possible without the metal. [Pg.1311]

Increasing reactivity in the Pauson-Khand reaction. The PK reaction originally suffered from a lack of substrate scope and low reaction yields which prevented it from being widely employed. The discovery of new reaction conditions (additives and modified methods) led to an improvement in yields and reaction times, allowing the scope of the reaction to be expanded. [Pg.111]

Co2(CO)g has been used in numerous reactions in addition to the plethora of substitution reactions that it undergoes with phosphines, nitrosyls, alkynes, and so forth. Many of these substituted carbonyl complexes and their reactions have been discussed elsewhere in this report. One area in which Co2(CO)g has received much attention is catalysis two classes of catalytic reactions of which Co2(CO)g plays a major role are hydroformylation (see Hydroformylation) and Pauson Khand cycloaddition (see Pauson-Khand Reaction). [Pg.845]

Dihydrofiirans have seen considerable use as substrates in the Pauson-Khand reaction. The parent compound reacts in excellent yield with acetylene, terminal and internal alkynes. Yields in this system respond very well to the use of catalytic reaction conditions (equation 4). Another unusual experimental modification has also been found by Pauson to be useful in this system addition of tri-n-butylphosphine oxide nearly doubles the product yield in certain cases (equation 37). The role of the added substance is unclear. Addition of phosphine oxide does not always improve reaction efficiency at this time there are no guidelines to indicate when its use might be beneficial. Substituted dihydrofurans give somewhat lower but still acceptable yields the poor regioselectivity in unsymmetrical cases is the more significant difficulty with these substrates (equation 38). [Pg.1048]


See other pages where Additives Pauson-Khand reaction is mentioned: [Pg.88]    [Pg.420]    [Pg.284]    [Pg.79]    [Pg.246]    [Pg.733]    [Pg.49]    [Pg.91]    [Pg.120]    [Pg.170]    [Pg.252]    [Pg.271]    [Pg.513]    [Pg.79]    [Pg.258]    [Pg.321]    [Pg.207]    [Pg.136]    [Pg.161]    [Pg.162]    [Pg.3282]    [Pg.1038]    [Pg.1039]    [Pg.1057]    [Pg.1131]    [Pg.124]   
See also in sourсe #XX -- [ Pg.152 , Pg.155 , Pg.157 , Pg.170 , Pg.175 ]




SEARCH



Addition reactions Pauson-Khand reaction

Addition reactions Pauson-Khand reaction

Khand

Pauson

Pauson-Khand

Pauson-Khand reaction

© 2024 chempedia.info