Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Additives bismuth

Uses. Low melting solders, low melting alloys and metallurgical additives. Bismuth is a metal with some unusual properties like Ge and Ga its volume increases in solidification. It is the most diamagnetic metal, its alloys show large thermoelectric effect with the exception of Be has the lowest absorption cross-section for thermal neutrons. [Pg.509]

Properties of VPO precursor with additives bismuth and lanthanum. [Pg.342]

Solutions of many antimony and bismuth salts hydrolyse when diluted the cationic species then present will usually form a precipitate with any anion present. Addition of the appropriate acid suppresses the hydrolysis, reverses the reaction and the precipitate dissolves. This reaction indicates the presence of a bismuth or an antimony salt. [Pg.254]

Tellurium improves the machinability of copper and stainless steel, and its addition to lead decreases the corrosive action of sulfuric acid on lead and improves its strength and hardness. Tellurium is used as a basic ingredient in blasting caps, and is added to cast iron for chill control. Tellurium is used in ceramics. Bismuth telluride has been used in thermoelectric devices. [Pg.121]

Direct Titrations. The most convenient and simplest manner is the measured addition of a standard chelon solution to the sample solution (brought to the proper conditions of pH, buffer, etc.) until the metal ion is stoichiometrically chelated. Auxiliary complexing agents such as citrate, tartrate, or triethanolamine are added, if necessary, to prevent the precipitation of metal hydroxides or basic salts at the optimum pH for titration. Eor example, tartrate is added in the direct titration of lead. If a pH range of 9 to 10 is suitable, a buffer of ammonia and ammonium chloride is often added in relatively concentrated form, both to adjust the pH and to supply ammonia as an auxiliary complexing agent for those metal ions which form ammine complexes. A few metals, notably iron(III), bismuth, and thorium, are titrated in acid solution. [Pg.1167]

The reactors were thick-waked stainless steel towers packed with a catalyst containing copper and bismuth oxides on a skiceous carrier. This was activated by formaldehyde and acetylene to give the copper acetyUde complex that functioned as the tme catalyst. Acetylene and an aqueous solution of formaldehyde were passed together through one or more reactors at about 90—100°C and an acetylene partial pressure of about 500—600 kPa (5—6 atm) with recycling as required. Yields of butynediol were over 90%, in addition to 4—5% propargyl alcohol. [Pg.106]

Simple ABO compounds in addition to BaTiO are cadmium titanate [12014-14-17, CdTiO lead titanate [12060-00-3] PbTiO potassium niobate [12030-85-2] KNbO sodium niobate [12034-09-2], NaNbO silver niobate [12309-96-5], AgNbO potassium iodate [7758-05-6], KIO bismuth ferrate [12010-42-3], BiFeO sodium tantalate, NaTaO and lead zirconate [12060-01 -4], PbZrO. The perovskite stmcture is also tolerant of a very wide range of multiple cation substitution on both A and B sites. Thus many more complex compounds have been found (16,17), eg, (K 2 i/2) 3 ... [Pg.203]

There is often a wide range of crystalline soHd solubiUty between end-member compositions. Additionally the ferroelectric and antiferroelectric Curie temperatures and consequent properties appear to mutate continuously with fractional cation substitution. Thus the perovskite system has a variety of extremely usehil properties. Other oxygen octahedra stmcture ferroelectrics such as lithium niobate [12031 -63-9] LiNbO, lithium tantalate [12031 -66-2] LiTaO, the tungsten bron2e stmctures, bismuth oxide layer stmctures, pyrochlore stmctures, and order—disorder-type ferroelectrics are well discussed elsewhere (4,12,22,23). [Pg.205]

The first-stage catalysts for the oxidation to methacrolein are based on complex mixed metal oxides of molybdenum, bismuth, and iron, often with the addition of cobalt, nickel, antimony, tungsten, and an alkaU metal. Process optimization continues to be in the form of incremental improvements in catalyst yield and lifetime. Typically, a dilute stream, 5—10% of isobutylene tert-huty alcohol) in steam (10%) and air, is passed over the catalyst at 300—420°C. Conversion is often nearly quantitative, with selectivities to methacrolein ranging from 85% to better than 95% (114—118). Often there is accompanying selectivity to methacrylic acid of an additional 2—5%. A patent by Mitsui Toatsu Chemicals reports selectivity to methacrolein of better than 97% at conversions of 98.7% for a yield of methacrolein of nearly 96% (119). [Pg.253]

MAA and MMA may also be prepared via the ammoxidation of isobutylene to give meth acrylonitrile as the key intermediate. A mixture of isobutjiene, ammonia, and air are passed over a complex mixed metal oxide catalyst at elevated temperatures to give a 70—80% yield of methacrylonitrile. Suitable catalysts often include mixtures of molybdenum, bismuth, iron, and antimony, in addition to a noble metal (131—133). The meth acrylonitrile formed may then be hydrolyzed to methacrjiamide by treatment with one equivalent of sulfuric acid. The methacrjiamide can be esterified to MMA or hydrolyzed to MAA under conditions similar to those employed in the ACH process. The relatively modest yields obtainable in the ammoxidation reaction and the generation of a considerable acid waste stream combine to make this process economically less desirable than the ACH or C-4 oxidation to methacrolein processes. [Pg.253]

Other. Insoluble alkaline-earth metal and heavy metal stannates are prepared by the metathetic reaction of a soluble salt of the metal with a soluble alkah—metal stannate. They are used as additives to ceramic dielectric bodies (32). The use of bismuth stannate [12777-45-6] Bi2(Sn02)3 5H20, with barium titanate produces a ceramic capacitor body of uniform dielectric constant over a substantial temperature range (33). Ceramic and dielectric properties of individual stannates are given in Reference 34. Other typical commercially available stannates are barium stannate [12009-18-6] BaSnO calcium stannate [12013 6-6] CaSnO magnesium stannate [12032-29-0], MgSnO and strontium stannate [12143-34-9], SrSnO. ... [Pg.66]

Antimony is also used as a dopant in n-ty e semiconductors. It is a common additive in dopants for siHcon crystals with impurities, to alter the electrical conductivity. Interesting semiconductor properties have been reported for cadmium antimonide [12050-27-0] CdSb, and zinc antimonide [12039-35-9] ZnSb. The latter has good thermoelectric properties. Antimony with a purity as low as 99.9+% is an important alloying ingredient in the bismuth teUuride [1304-82-17, Bi Te, class of alloys which are used for thermoelectric cooling. [Pg.198]

Recovery of Bismuth from Tin Concentrates. Bismuth is leached from roasted tin concentrates and other bismuth-beating materials by means of hydrochloric acid. The acid leach Hquor is clarified by settling or filtration, and the bismuth is precipitated as bismuth oxychloride [7787-59-9] BiOCl, when the Hquors are diluted usiag large volumes of water. The impure bismuth oxychloride is usually redissolved ia hydrochloric acid and reprecipitated by diluting several times. It is then dried, mixed with soda ash and carbon, and reduced to metal. The wet bismuth oxychloride may also be reduced to metal by means of iron or 2iac ia the presence of hydrochloric acid. The metallic bismuth produced by the oxychloride method requites additional refining. [Pg.124]

Bismuth pellets range from 4.5 to 60 g in size and are used for metallurgical additives. Thek convenient size and specific weights make them particularly useful as feedstock when a given quantity of bismuth must be added regularly to a melt. [Pg.124]

The United States consumed 1500 metric tons of bismuth in 1988 and exported 147 t (1). The average domestic dealer price was 12.74/kg. The world mine output, excluding the United States, was estimated to be 2770 t in 1988 the world refinery production was estimated as 3510 t. Of the bismuth consumed in the United States, 679 t was used for industrial and laboratory chemicals, cosmetics (qv), and pharmaceuticals (qv) 333 t for fusible alloys 493 t for metaHurgical additives 12 t for other alloys and 15 t for miscellaneous purposes. [Pg.127]

Bismuth triduoride is usually prepared by dissolving either Bi O or BiOF in hydroduoric acid to yield the addition compound bismuth triduoride ttihydroduoride [66184-11-0] 3 HF or H2(BiF ). Caredil evaporation of the solution permits isolation of a grey soHd, which upon heating loses HF to yield BiF. It may be purified by sublimation in a stream of HF at 500°C. Bismuth triduoride may also be prepared by direct duorination of bismuth by (/) reaction of Bi O with sulfiir tetraduoride, SF (2) treatment of metallic bismuth with HF at 350°C and (J) reduction of BiF in a dilute stream of hydrogen. [Pg.128]

Bismuth trichloride shows considerable tendency to form addition compounds. Reaction with ammonia yields the colodess, easily volatili2ed bismuth trichloride triammine [66172-89-2] BiCl ANH, as well as the red, thermally unstable bismuth trichloride hemiammine [66172-90-5] 2BiCl2 NH. Compounds of formula BiCl NO, BiCl 2N02, and BiCl NOCl may be isolated these are stable in dry air but are decomposed by moisture. Bismuth... [Pg.128]

Bismuth trioxide may be prepared by the following methods (/) the oxidation of bismuth metal by oxygen at temperatures between 750 and 800°C (2) the thermal decomposition of compounds such as the basic carbonate, the carbonate, or the nitrate (700—800°C) (J) precipitation of hydrated bismuth trioxide upon addition of an alkah metal hydroxide to a solution of a bismuth salt and removal of the water by ignition. The gelatinous precipitate initially formed becomes crystalline on standing it has been represented by the formula Bi(OH)2 and called bismuth hydroxide [10361 -43-0]. However, no definite compound has been isolated. [Pg.130]

During the 1980s, antimony was widely used in FCCUs that had a problem with contaminant metals. In the late 1980s, other additives were introduced to combat the contaminant metals, eg. Chevron introduced a bismuth-based additive, which is claimed to provide performance similar to antimony (18). Also in the late 1980s, cracking catalysts were developed with metals traps that appear to be so effective in containing the adverse effects of contaminant metals that additive-type inhibitors are no longer needed (19). [Pg.210]


See other pages where Additives bismuth is mentioned: [Pg.124]    [Pg.124]    [Pg.826]    [Pg.362]    [Pg.299]    [Pg.668]    [Pg.873]    [Pg.124]    [Pg.124]    [Pg.826]    [Pg.362]    [Pg.299]    [Pg.668]    [Pg.873]    [Pg.238]    [Pg.249]    [Pg.118]    [Pg.147]    [Pg.281]    [Pg.458]    [Pg.55]    [Pg.379]    [Pg.311]    [Pg.553]    [Pg.332]    [Pg.337]    [Pg.338]    [Pg.124]    [Pg.124]    [Pg.128]    [Pg.130]    [Pg.130]    [Pg.130]    [Pg.130]    [Pg.131]    [Pg.292]    [Pg.362]    [Pg.221]    [Pg.293]   
See also in sourсe #XX -- [ Pg.130 , Pg.131 ]




SEARCH



Bismuth molybdate catalyst metal addition

Bismuth triflate, addition with

Bismuth, addition with

© 2024 chempedia.info