Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Addition synthetic applications

Although no additional synthetic applications have been completed at this time, cyclopropanes 13, 23, and 49 are derivatives of cyclopropanone, and derivatives of this type have been used as precursors for a variety of compounds46 such as 0-lactams47, cyclobutanones48, and cyclopropanols47. ... [Pg.78]

Additional examples where chloroacetates from acyclic dienes have been used include the synthesis of pentadienylamines [96], dienesulfones [97], c-methylenecyclopentenones [98], marine natural products [99], and the carpenter bee pheromone [82]. Some additional Synthetic applications of the chloroacetoxylation of cyclic dienes are given in Refs. [100-104]. Chloroacetoxylation was also used to prepare a number of starting materials for the intramolecular reactions discussed in this chapter. [Pg.467]

Additional synthetic applications of this methodology are illustrated by enantioselective syntheses of 4-phenyl-(3-lactams [84]. Highly enantioenriched (3-phenylamino acid derivative 114 can be transformed into P-lactam 115 in good yields with 94 6 er, Eq. (7). [Pg.162]

Some additional synthetic applications have been described for the uridine-derived 2, 3 -ene-3 -phenylselenone reported in Vol. 23,(p- 217), These include addition-elimination reactions with heterocycles to give products (42), and addition-substitution reactions with diamines to yield for example (43) and (44).i0 ... [Pg.232]

The preparation and some synthetic applications of lithium dialkylcuprates were described earlier (Section 14 11) The most prominent feature of these reagents is then-capacity to undergo conjugate addition to a p unsaturated aldehydes and ketones... [Pg.780]

Nucleophiles other than water can also add to the carbon-nitrogen triple bond of nitriles In the following section we will see a synthetic application of such a nude ophilic addition... [Pg.871]

The synthetic application of reactions based upon the intramolecular addition of a carbanion or its enamine equivalent to a carbonyl or nitrile group has been explored extensively. One class of such reactions, namely the Dieckman, has already been discussed in Section 3.03.2.2, since ring closure can often occur so as to form either the C(2)—C(3) or C(3)—C(4) bond of the heterocyclic ring. Some illustrative examples of the application of this type of ring closure are presented in Scheme 46. [Pg.114]

The most common synthetic application of mercury-catalyzed addition to alkynes is the conversion of alkynes to ketones. This reaction is carried out under aqueous acidic conditions, where the addition intermediate undergoes protonation to regenerate Hg. ... [Pg.376]

Cycloaddition involves the combination of two molecules in such a way that a new ring is formed. The principles of conservation of orbital symmetry also apply to concerted cycloaddition reactions and to the reverse, concerted fragmentation of one molecule into two or more smaller components (cycloreversion). The most important cycloaddition reaction from the point of view of synthesis is the Diels-Alder reaction. This reaction has been the object of extensive theoretical and mechanistic study, as well as synthetic application. The Diels-Alder reaction is the addition of an alkene to a diene to form a cyclohexene. It is called a [47t + 27c]-cycloaddition reaction because four tc electrons from the diene and the two n electrons from the alkene (which is called the dienophile) are directly involved in the bonding change. For most systems, the reactivity pattern, regioselectivity, and stereoselectivity are consistent with describing the reaction as a concerted process. In particular, the reaction is a stereospecific syn (suprafacial) addition with respect to both the alkene and the diene. This stereospecificity has been demonstrated with many substituted dienes and alkenes and also holds for the simplest possible example of the reaction, that of ethylene with butadiene ... [Pg.636]

Substitution, addition, and group transfer reactions can occur intramolecularly. Intramolecular substitution reactions that involve hydrogen abstraction have some important synthetic applications, since they permit functionalization of carbon atoms relatively remote from the initial reaction site. ° The preference for a six-membered cyclic transition state in the hydrogen abstraction step imparts position selectivity to the process ... [Pg.718]

The bulk of enamine studies since Stork s original publication have focused on establishing the breadth and limitations of individual substitution reactions and on extending the list of useful electrophiles. In addition, auxiliary studies have enriched our knowledge about the ambident nature of the vinyl nitrogen system, stereoelectronic factors governing its reactivity, its stability and spectroscopic properties. An increasing number of synthetic applications of these fundamental studies can be expected in future years. [Pg.314]

Heteroatom radical addition-cyclization and its synthetic application 99H(50)505. [Pg.214]

From the point of view of general synthetic applicability, Table 10-6 shows clearly that there is no overall rationale in these cyclization reactions. The range of yields is enormous and, in addition, it is hardly possible to specify whether heterolytic or homolytic reaction conditions are preferred. [Pg.262]

In addition to the synthetic applications related to the stereoselective or stereospecific syntheses of various systems, especially natural products, described in the previous subsection, a number of general synthetic uses of the reversible [2,3]-sigmatropic rearrangement of allylic sulfoxides are presented below. Several investigators110-113 have employed the allylic sulfenate-to-sulfoxide equilibrium in combination with the syn elimination of the latter as a method for the synthesis of conjugated dienes. For example, Reich and coworkers110,111 have reported a detailed study on the conversion of allylic alcohols to 1,3-dienes by sequential sulfenate sulfoxide rearrangement and syn elimination of the sulfoxide. This method of mild and efficient 1,4-dehydration of allylic alcohols has also been shown to proceed with overall cis stereochemistry in cyclic systems, as illustrated by equation 25. The reaction of trans-46 proceeds almost instantaneously at room temperature, while that of the cis-alcohol is much slower. This method has been subsequently applied for the synthesis of several natural products, such as the stereoselective transformation of the allylic alcohol 48 into the sex pheromone of the Red Bollworm Moth (49)112 and the conversion of isocodeine (50) into 6-demethoxythebaine (51)113. [Pg.731]

Recent synthetic applications of the photochemical [2 + 2] cycloaddition of unsaturated sulfones have been noted. Musser and Fuchs84 have effected an intramolecular [2 + 2] addition of a 6-membered ring vinyl sulfone and a five-membered ring vinylogous ester in excellent yield, as part of a synthetic approach to the synthesis of the mould metabolite, cytochalasin C. The stereospecificity of the addition was only moderate, however, and later problems with this synthetic approach led to its abandonment. Williams and coworkers85 have used the facile [2 + 2] photoaddition of 73 and... [Pg.885]

In addition to the insoluble polymers described above, soluble polymers, such as non-cross-linked PS and PEG have proven useful for synthetic applications. However, since synthesis on soluble supports is more difficult to automate, these polymers are not used as extensively as insoluble beads. Soluble polymers offer most of the advantages of both homogeneous-phase chemistry (lack of diffusion phenomena and easy monitoring) and solid-phase techniques (use of excess reagents and ease of isolation and purification of products). Separation of the functionalized matrix is achieved by either precipitation (solvent or heat), membrane filtration, or size-exclusion chromatography [98,99]. [Pg.87]

Kolbe electrolysis is a powerful method of generating radicals for synthetic applications. These radicals can combine to symmetrical dimers (chap 4), to unsymmetrical coupling products (chap 5), or can be added to double bonds (chap 6) (Eq. 1, path a). The reaction is performed in the laboratory and in the technical scale. Depending on the reaction conditions (electrode material, pH of the electrolyte, current density, additives) and structural parameters of the carboxylates, the intermediate radical can be further oxidized to a carbocation (Eq. 1, path b). The cation can rearrange, undergo fragmentation and subsequently solvolyse or eliminate to products. This path is frequently called non-Kolbe electrolysis. In this way radical and carbenium-ion derived products can be obtained from a wide variety of carboxylic acids. [Pg.92]

The aspects of medium engineering summarized so far were a hot topic in biocatalysis research during the 1980s and 1990s [5]. Nowadays, all of them constitute a well-established methodology that is successfully employed by chemists in synthetic applications, both in academia and industry. In turn, the main research interests of medium engineering have moved toward the use of ionic liquids as reaction media and the employment of additives. [Pg.14]

The addition of acetic acid (0.5 equiv. to the substrate) to the catalyst system led to increased activity (doubling of yield) by maintaining the selectivity with 1.2 equiv. H2O2 as terminal oxidant. Advantageously, the system is characterized by a certain tolerance towards functional groups such as amides, esters, ethers, and carbonates. An improvement in conversions and selectivities by a slow addition protocol was shown recently [102]. For the first time, a nonheme iron catalyst system is able to oxidize tertiary C-H bonds in a synthetic applicable and selective manner and therefore should allow for synthetic applications [103]. [Pg.96]

Two illustrations that show the power of this reaction for the preparation of strained cycloalkenes are the contractions of 102 to the propellane 103 , an application that has been reviewed , and of 104 to the bicyclo[2.1.1]hexene 105 . The utility of the Ramberg-Backlund rearrangement in the preparation of various natural products such as steroids , terpenoids and pheromones has been demonstrated. In addition to the synthetic applications mentioned in the previous subsection, several selected examples taken from the recent literature are given in equations 66-69. These examples further demonstrate the potential of this method for alkene synthesis in general. [Pg.697]

In addition to the synthetic applications related to the stereoselective or stereospecific syntheses of various systems, especially natural products, described in the previous subsection, a number of general synthetic uses of the reversible [2,3]-sigmatropic rearrangement of allylic sulfoxides are presented below. Several investigators 3 jj... [Pg.731]

Even sulfoxides, in which nucleophilicity is decreased by the additional oxygen, can be alkylated by methyl iodide. These sulfoxonium salts have useful synthetic applications as discussed in Section 2.5.1. [Pg.233]

An important synthetic application of this reaction is in dehalogenation of dichloro- and dibromocyclopropanes. The dihalocyclopropanes are accessible via carbene addition reactions (see Section 10.2.3). Reductive dehalogenation can also be used to introduce deuterium at a specific site. The mechanism of the reaction involves electron transfer to form a radical anion, which then fragments with loss of a halide ion. The resulting radical is reduced to a carbanion by a second electron transfer and subsequently protonated. [Pg.439]


See other pages where Addition synthetic applications is mentioned: [Pg.83]    [Pg.79]    [Pg.368]    [Pg.33]    [Pg.83]    [Pg.79]    [Pg.368]    [Pg.33]    [Pg.141]    [Pg.53]    [Pg.44]    [Pg.99]    [Pg.353]    [Pg.697]    [Pg.729]    [Pg.879]    [Pg.148]    [Pg.185]    [Pg.285]    [Pg.142]    [Pg.729]    [Pg.879]    [Pg.74]    [Pg.289]    [Pg.324]    [Pg.675]    [Pg.694]   
See also in sourсe #XX -- [ Pg.912 ]




SEARCH



Additional Applications

Additions, Application

Synthetic applications

© 2024 chempedia.info