Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cyclization radical addition

A tandem radical 5-exo cyclization/radical addition/allylic substitution reaction was subsequently described [292]. Allylic ot-bromo acetal 242b cyclized cobalt-catalyzed. Addition to diene 245 and subsequent coupling with coformed organocobalt(I) species generates an allylcobalt complex, which undergoes reductive elimination to cyclic product 246 in 93% yield (cf. Fig. 56). [Pg.261]

Heteroatom radical addition-cyclization and its synthetic application 99H(50)505. [Pg.214]

A5-hexenyl substituent, extensive cyclization occurs to yield the cyclopentylcarbinyl product from the yields of uncyclized and cyclized products for A5-hexenylmercury chloride, the rate constants for equation 50 have been estimated (vide supra). The SH2 reaction 49 has also been invoked to be the key step in the alkylation of -substituted styrenes by a free-radical addition-elimination sequence, namely96... [Pg.1110]

The (TMS)3Si radical addition to terminal alkenes or alkynes, followed by radical cyclization to oxime ethers, were also studied (Reaction 50). The radical reactions proceeded effectively by the use of triethylborane as a radical initiator to provide the functionalized pyrrolidines via a carbon-carbon bond-forming process. Yields of 79 and 63% are obtained for oxime ethers connected with an olefin or propargyl group, respectively. [Pg.141]

A radical carboxyarylation approach was introduced as the key step in the total synthesis of several biologically important natural products (Scheme 27). Treatment of thiocarbonate derivatives 112 (R = Me or TBS) with 1.1 equiv of (TMS)3SiH in refluxing benzene and in the presence of AIBN (0.4 equiv added over 6h) as radical initiator, produced compound 113 in 44% yield. This remarkable transformation resulted from a radical cascade, involving (TMSlsSi radical addition to a thiocarbonyl function (112 114), 5-era cyclization (114->115) and intramolecular 1,5-ipso substitution (115 116) with the final ejection of (TMSlsSiS radical. [Pg.157]

Scheme 1 5-exo Cyclization initiated by phosphinyl radical addition onto an alkyne... [Pg.45]

From a synthetic point of view, the regioselectivity and stereoselectivity of the cyclization are of paramount importance. As discussed in Section 11.2.3.3 of Part A, the order of preference for cyclization of alkyl radicals is 5-exo > 6-endo 6-exo > 7-endo S-endo > 1-exo because of stereoelectronic preferences. For relatively rigid cyclic structures, proximity and alignment factors determined by the specific geometry of the ring system are of major importance. Theoretical analysis of radical addition indicates that the major interaction of the attacking radical is with the alkene LUMO.321 The preferred direction of attack is not perpendicular to the it system, but rather at an angle of about 110°. [Pg.967]

As with carbocation-initiated polyene cyclizations, radical cyclizations can proceed through several successive steps if the steric and electronic properties of the reactant provide potential reaction sites. Cyclization may be followed by a second intramolecular step or by an intermolecular addition or alkylation. Intermediate radicals can be constructed so that hydrogen atom transfer can occur as part of the overall process. For example, 2-bromohexenes having radical stabilizing substituents at C(6) can undergo cyclization after a hydrogen atom transfer step.348... [Pg.980]

Radical addition to alkenes has been used in cyclizations in aqueous media. Oshima and co-worker studied triethylborane-induced atom-transfer radical cyclization of iodoacetals and iodoacetates in water.121 Radical cyclization of the iodoacetal proceeded smoothly both in aqueous methanol and in water. Atom-transfer radical cyclization of allyl iodoacetate is much more efficient in water than in benzene or hexane. For instance, treatment of allyl iodoacetate with triethylborane in benzene or hexane at room temperature did not yield the desired lactone. In contrast, the compound cyclized much more smoothly in water and yielded the corresponding y-lactone in high yield (Eq. 3.31). [Pg.68]

Clerici and Porta reported that phenyl, acetyl and methyl radicals add to the Ca atom of the iminium ion, PhN+Me=CHMe, formed in situ by the titanium-catalyzed condensation of /V-methylanilinc with acetaldehyde to give PhNMeCHMePh, PhNMeCHMeAc, and PhNMeCHMe2 in 80% overall yield.83 Recently, Miyabe and co-workers studied the addition of various alkyl radicals to imine derivatives. Alkyl radicals generated from alkyl iodide and triethylborane were added to imine derivatives such as oxime ethers, hydrazones, and nitrones in an aqueous medium.84 The reaction also proceeds on solid support.85 A-sulfonylimines are also effective under such reaction conditions.86 Indium is also effective as the mediator (Eq. 11.49).87 A tandem radical addition-cyclization reaction of oxime ether and hydrazone was also developed (Eq. 11.50).88 Li and co-workers reported the synthesis of a-amino acid derivatives and amines via the addition of simple alkyl halides to imines and enamides mediated by zinc in water (Eq. 11.51).89 The zinc-mediated radical reaction of the hydrazone bearing a chiral camphorsultam provided the corresponding alkylated products with good diastereoselectivities that can be converted into enantiomerically pure a-amino acids (Eq. 11.52).90... [Pg.358]

Scheme 3.37. Domino radical addition/cyclization-reaction for the asymmetric synthesis of (3-aminobutyrolactones. Scheme 3.37. Domino radical addition/cyclization-reaction for the asymmetric synthesis of (3-aminobutyrolactones.
The unexpected formation of cyclopenta[b]indole 3-339 and cyclohepta[b]indole derivatives has been observed by Bennasar and coworkers when a mixture of 2-in-dolylselenoester 3-333 and different alkene acceptors (e. g., 3-335) was subjected to nonreductive radical conditions (hexabutylditin, benzene, irradiation or TTMSS, AIBN) [132]. The process can be explained by considering the initial formation of acyl radical 3-334, which carries out an intermolecular radical addition onto the alkene 3-335, generating intermediate 3-336 (Scheme 3.81). Subsequent 5-erafo-trig cyclization leads to the formation of indoline radical 3-337, which finally is oxidized via an unknown mechanism (the involvement of AIBN with 3-338 as intermediate is proposed) to give the indole derivative 3-339. [Pg.273]

Scheme 3.81. Domino 2-indolylacyl radical addition/cyclization reaction. Scheme 3.81. Domino 2-indolylacyl radical addition/cyclization reaction.
Scheme 10.14. Domino radical addition-cyclization process of oxime ethers. Scheme 10.14. Domino radical addition-cyclization process of oxime ethers.
Epoxides can also be reductively opened to form a radical. An example of an intramolecular cyclization of such a radical has recently been reported <06TL7755>. Treatment of 40 with Cp2TiCl generates an intermediate alkoxy radical, which then adds to the carbonyl of the formate ester. The product, 41, is formed as a 2 1 mixture of isomers at the anomeric carbon. This reaction is one of the first examples of a radical addition to an ester. The major byproduct of this reaction is the exo-methylene compound, 42, arising from a P-hydrogen elimination. [Pg.77]

A new approach to piperidines via cyclization of dienes, such as 158, employs a phosphorus hydride mediated radical addition/cyclization reaction <06JOC3656>. This reaction proceeds with complete regioselectivity to create the 6-exo-trig product 159, although as an inseparable mixture of two of the four possible diastereomers. [Pg.335]

Further variations of the general scenario described in Scheme 4 consist in trapping adduct radical 48 before oxidation occurs7. This can be achieved if intramolecular radical additions are possible, as is the case in radical 62. Oxidation of 62 to the corresponding allyl cation is slower than 6-ew-cyclization to the chlorobenzene ring to form radical 63, which subsequently is oxidized to yield tetrahydronaphthalene 64 as the main product (equation 27). This sequence does not work well for other dienes such as 2,3-dimethyl-1,3-butadiene, for which oxidation of the intermediate allyl radical is too rapid to allow radical cyclization onto the aromatic TT-system. [Pg.646]

A tandem radical addition/cyclization process has been described for the formation of benzindolizidine systems from l-(2-iodoethyl)indoles and methyl acrylate <00TL10181>. In this process, sun-lamp irradiation of a solution of the l-(2-iodoethyl)ethylindoles 149 in refluxing benzene containing hexamethylditin and methyl acrylate effects intermolecular radical addition to the activated double bond leading to the stabilized radical 150. Intramolecular cyclization to the C-2 position of the indole nucleus then affords the benzindolzidine derivatives 151 after rearomatization of the tricyclic radical. [Pg.123]

Michael-type radical cyclization." A short synthesis of 3-demethoxyerythra-tidinone (3) involves a Michael-type radical addition. Thus 1 on reaction with BujSnH (AIBN) affords 2 as a single isomer in 65% yield. This product is converted by a three-step sequence into 3. [Pg.316]


See other pages where Cyclization radical addition is mentioned: [Pg.140]    [Pg.141]    [Pg.661]    [Pg.140]    [Pg.141]    [Pg.661]    [Pg.382]    [Pg.386]    [Pg.386]    [Pg.796]    [Pg.6]    [Pg.637]    [Pg.978]    [Pg.142]    [Pg.143]    [Pg.961]    [Pg.967]    [Pg.983]    [Pg.984]    [Pg.76]    [Pg.22]    [Pg.256]    [Pg.213]    [Pg.349]    [Pg.245]    [Pg.250]    [Pg.109]    [Pg.99]   
See also in sourсe #XX -- [ Pg.485 ]




SEARCH



Radical cyclization

© 2024 chempedia.info