Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Addition reactions olefins

This method follows the ASTM D 1159 and D 2710 procedures and the AFNOR M 07-017 standard. It exploits the capacity of the double olefinic bond to attach two bromine atoms by the addition reaction. Expressed as grams of fixed bromine per hundred grams of sample, the bromine number, BrN, enables the calculation of olefinic hydrocarbons to be made if the average molecular weight of a sufficiently narrow cut is known. [Pg.83]

The Michael Addition Reaction consists in the addition of the sodio-derivative of ethyl acetoacetate, ethyl malonate or ethyl cyanoacetate to an olefine group... [Pg.277]

Michael condensations are catalyzed by alkaU alkoxides, tertiary amines, and quaternary bases and salts. Active methylene compounds and aUphatic nitro compounds add to form P-substituted propionates. These addition reactions are frequendy reversible at high temperatures. Exceptions are the tertiary nitro adducts which are converted to olefins at elevated temperatures (24). [Pg.151]

Tetrafluoroethylene undergoes addition reactions typical of an olefin. It bums in air to form carbon tetrafluoride, carbonyl fluoride, and carbon dioxide (24). Under controlled conditions, oxygenation produces an epoxide (25) or an explosive polymeric peroxide (24). Trifluorovinyl ethers,... [Pg.349]

A typical example of a nonpolymeric chain-propagating radical reaction is the anti-Markovnikov addition of hydrogen sulfide to a terminal olefin. The mechanism involves alternating abstraction and addition reactions in the propagating steps ... [Pg.220]

In the examples, a nitro group is substituted for a hydrogen atom, and water is a by-product. Nitro groups may, however, be substituted for other atoms or groups of atoms. In Victor Meyer reactions which use silver nitrite, the nitro group replaces a hahde atom, eg, I or Br. In a modification of this method, sodium nitrite dissolved in dimethyl formamide or other suitable solvent is used instead of silver nitrite (1). Nitro compounds can also be produced by addition reactions, eg, the reaction of nitric acid or nitrogen dioxide with unsaturated compounds such as olefins or acetylenes. [Pg.32]

Chemical Properties. Higher a-olefins are exceedingly reactive because their double bond provides the reactive site for catalytic activation as well as numerous radical and ionic reactions. These olefins also participate in additional reactions, such as oxidations, hydrogenation, double-bond isomerization, complex formation with transition-metal derivatives, polymerization, and copolymerization with other olefins in the presence of Ziegler-Natta, metallocene, and cationic catalysts. All olefins readily form peroxides by exposure to air. [Pg.426]

The basis of the high normal to isoaldehyde selectivity obtained ia the LP Oxo reaction is thought to be the anti-Markovnikov addition of olefin to HRhCOL2 to give the linear alkyl, Rh(CO)L2CH2CH2CH2CH2, the precursor of straight-chain aldehyde. Anti-Markovnikov addition is preferred ia this... [Pg.468]

Commercial phosphine derivatives are produced either by the acid-cataly2ed addition of phosphine to an aldehyde or by free-radical addition to olefins, particulady a-olefins. The reactions usually take place in an autoclave under moderate pressures (<4 MPa (580 psi)) and at temperatures between 60 and 100°C. [Pg.318]

Paraffin alkylation as discussed here refers to the addition reaction of an isoparaffin and an olefin. The desired product is a higher molecular weight paraffin that exhibits a greater degree of branching than either of the reactants. [Pg.45]

Addition Reactions. The C=C double bond of aEyl alcohol undergoes addition reactions typical of olefinic double bonds. For example, when bromine is added, a good yield of 2,3-dibromopropanol is obtained although 1,2,3-tribromopropane is obtained as a by-product. [Pg.72]

Etherification. Ethers of amyl alcohols have been prepared by reaction with ben2hydrol (63), activated aromatic haUdes (64), dehydration-addition reactions (65), addition to olefins (66—71), alkoxylation with olefin oxides (72,73) and displacement reactions involving thek alkah metal salts (74—76). [Pg.373]

Polymerization Reactions. Polymerization addition reactions are commercially the most important class of reactions for the propylene molecule and are covered in detail elsewhere (see Olefin polymers, polypropylene). Many types of gas- or liquid-phase catalysts are used for this purpose. Most recently, metallocene catalysts have been commercially employed. These latter catalysts requite higher levels of propylene purity. [Pg.124]

Addition to Olefins. OrganohydrosHanes can also be prepared by addition of halosHanes and organosilanes containing multiple Si—H bonds to olefins. These reactions are catalyzed by platinum, platinum salts, peroxides, ultraviolet light, or ionizing radiation. [Pg.30]

Sulfurized olefins (S2CI2 plus isobutene) are further reacted with S and Na2S to give products useful as extreme pressure lubricant additives (144,145). The reaction of unsaturated natural oils with sulfur monochloride gives resinous products known as Factice, which are useful as art-gum erasers and mbber additives (146,147). The addition reaction of sulfur monochloride with unsaturated polymers, eg, natural mbber, produces cross-links and thus serves as a means for vulcanizing mbber at moderate temperatures. The photochemical cross-linking of polyethylene has also been reported (148). [Pg.138]

Sulfur dichloride undergoes many of the same reactions with organic compounds as described for sulfur monochloride. Addition to olefins affords a route to bis(2-chloroalkyl) sulfides and, ia certain cases, heterocycHc sulfides (159,160). [Pg.139]

Polymerization. Polymerization reactions, which are addition reactions, are used to produce the principal products formed direcdy from butlylenes butyl elastomers polybutylenes and polyisobutylene (see Elastomers, synthetic Olefin polymers). [Pg.364]

Cyclopentadiene contains conjugated double bonds and an active methylene group and can thus undergo a Diels-Alder diene addition reaction with almost any unsaturated compound, eg, olefins, acetylene, maleic anhydride, etc. The number of its derivatives is extensive only the reactions and derivatives considered most important are discussed. [Pg.429]

Characteristic reactions of singlet oxygen lead to 1,2-dioxetane (addition to olefins), hydroperoxides (reaction with aHyhc hydrogen atom), and endoperoxides (Diels-Alder "4 -H 2" cycloaddition). Many specific examples of these spectrally sensitized reactions are found iu reviews (45—48), earlier texts (15), and elsewhere iu the Engchpedia. [Pg.435]

The most common method of epoxidation is the reaction of olefins with per-acids. For over twenty years, perbenzoic acid and monoperphthalic acid have been the most frequently used reagents. Recently, m-chloroperbenzoic acid has proved to be an equally efficient reagent which is commercially available (Aldrich Chemicals). The general electrophilic addition mechanism of the peracid-olefin reaction is currently believed to involve either an intra-molecularly bonded spiro species (1) or a 1,3-dipolar adduct of a carbonyl oxide, cf. (2). The electrophilic addition reaction is sensitive to steric effects. [Pg.2]

Although the enamine (30) underwent addition reaction with ethyl azido-dicarboxylate, it failed to add another mole of jS-nitrostyrene. In a similar manner the morpholine enamine of 2-methylcyclohexanone also failed to react with this olefin, i.e., jS-nitrostyrene, which is undoubtedly due to the 1,3-diaxial interaction between the methyl group and the incoming electrophile in the transition state. [Pg.18]

The acylation of enamines derived from cyclic ketones, which can lead to the acyl ketone or ring expansion (692-694), was studied by NMR and mass spectroscopic analysis of the products (695,696). In a comparative study of the rates of diphenylketene addition to olefins, a pronounced activation was observed in enamines (697). Enamine N- and C-acylation products were obtained from reactions of Schiff s bases (698), vinylogous urethanes (699), cyanamides (699), amides (670,700), and 2-benzylidene-3-methylbenzothiazoline (672) with acid chlorides, anhydrides, and dithio-esters (699). [Pg.392]

Addition reactions — The fullerenes Ceo and C70 react as electron-poor olefins with fairly localized double bonds. Addition occurs preferentially at a double bond common to two annelated 6-membered rings (a 6 6 bond) and a second addition, when it occurs is generally in the opposite hemisphere. The first characteriz-able mono adduct was [C6oOs04(NC5H4Bu )2]. formed by reacting Cgo with an excess of OSO4 in 4-butylpyridine. The structure is shown in... [Pg.286]

Other addition reactions are shown in the scheme. Thus, Ceo reacts as an olefin towards [Pt (PPh3)2] to give the t adduct [Pt(>j -C6o)(PPh3)2]. Indeed six centres can simultaneously be coordinated by a single fullerene cluster to give [C6o M(PEt3)2 6], (M = Ni, Pd, Pt), with the 6M arranged octahedrally about the core. Likewise, reaction... [Pg.286]

These singlet and triplet state species exhibit the important differences in chemical behavior to be expected. The former species, with their analogy to carbonium ions, are powerful electrophiles and the relative rates of their reaction with a series of substrates increases with the availability of electrons at the reaction center their addition reactions with olefins are stereospecific. Triplet state species are expected to show the characteristics of radicals i.e., the relative rates of additions to olefins do not follow the same pattern as those of electrophilic species and the additions are not stereospecific. [Pg.60]

Depending on the electronic state of azafulvalene and the reaction conditions, simple nucleophiles such as amines or alcohols show a different behavior. Upon heating methanol reacted with azafulvalenes as electron-rich olefins by addition to the central double bond (64BSF2857 67LA155). Using the TAF 77 (Ar = Ph), the addition reaction in a neutral benzene-ethanol solution required several days to obtain a minor amount of 147, while the reaction proceeded rapidly in the presence of a catalytic amount of potassium hydroxide (79JOC1241). Tlie yellow-colored adduct 147 can be reconverted to the quinoid starting material by irradiation (Scheme 58). [Pg.169]

It is important to note that benzene does not behave like a typical cyclic olefin in that the benzene ring undergoes ionic substitution rather than addition reactions the ring also resists hydrogenation and is chemically more inert. Despite this, it is still a common practice to represent benzene with three double bonds as if it were 2,4,6-cyclohexatriene,... [Pg.310]

The completion of the synthesis of the polyol glycoside subunit 7 requires construction of the fully substituted stereocenter at C-10 and a stereocontrolled dihydroxylation of the C3-C4 geminally-disub-stituted olefin (see Scheme 10). The action of methyllithium on Af-methoxy-Af-methylamide 50) furnishes a methyl ketone which is subsequently converted into intermediate 10 through oxidative removal of the /j-methoxybenzyl protecting group with DDQ. Intermediate 10 is produced in an overall yield of 83 % from 50) , and is a suitable substrate for an a-chelation-controlled carbonyl addition reaction.18 When intermediate 10 is exposed to three equivalents of... [Pg.502]

Since electron-donating substituents at the phosphorus atom favor addition reactions over olefination reactions, addition of 9 to aldehydes leads to the exclusive formation of the silyl-pro-tected allylic alcohols 10. No reaction products arising from Wittig alkenylation could be detected. The ylides (R,S)-9 and (S.S)-9 and their enantiomers were prepared from the corresponding optically pure l-[2-(diphenylphosphino)ferrocenyl]-A,A -dimethylethanamine diastereomers 7 via the phosphonium salts 8. [Pg.144]

It undergoes many condensation and addition reactions with carbonyl compds, active methylene compds, and activated olefins (Refs 10,43,... [Pg.87]

R.C. Paule, Kinetics of Peroxide-Catalyzed Addition Reactions of Halogenated Compounds to Olefins , Florida Univ Contract No nr-1017 (00), ONR (1956) 6) L.P. Kuhn C. Well-... [Pg.681]


See other pages where Addition reactions olefins is mentioned: [Pg.343]    [Pg.341]    [Pg.269]    [Pg.293]    [Pg.358]    [Pg.508]    [Pg.153]    [Pg.295]    [Pg.105]    [Pg.601]    [Pg.452]    [Pg.347]    [Pg.745]    [Pg.17]    [Pg.187]    [Pg.567]    [Pg.320]    [Pg.25]    [Pg.801]   
See also in sourсe #XX -- [ Pg.93 ]




SEARCH



Addition reactions to olefin

Carbonium ions, addition reactions from olefins

Olefin addition reaction absolute rate

Olefin reactions

Olefination reactions

Olefinic addition reactions

Olefinic addition reactions

Olefins addition reactions, formed

Olefins oxidative-addition reactions

Olefins, addition

© 2024 chempedia.info