Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

1,2-addition reactions cyanohydrin ethers

In the addition reaction of cyanotrimethylsilane [147] to aliphatic aldehydes, another synthetic application of a BINOL-Ti catalyst was reported by Reetz [88]. In this instance, however, BINOL-TiCh was prepared by treatment of the lithium salt of BINOL with TiCU in ether (vide supra). The BINOL-TiCh thus obtained was used as a catalyst for the cyanosilylation reaction to give the cyanohydrins in up to 82 % ee (Sch. 62). [Pg.836]

Addition to Carbonyls, Imines (Strecker-type Reactions), and Heteroaromatic Rings (Reissert-type Reactions). Cyanohydrin trimethylsilyl ethers are of significant synthetic interest as they can be transformed into a variety of multifunctional intermediates. Aldehydes and ketones can be enantioselectively converted to cyanohydrin trimethylsilyl ethers when treated with cyanotrimethylsilane in the presence of a Lewis acid and a chiral ligand. Enantioselective and/or diastereoselective formation of cyanohydrins and their derivatives has been reported and most of these reactions involve chiral ligands and metal catalysts containing Ti (eq 24), Sm (eq 25), and A1 (eq 26). ... [Pg.186]

Miscellaneous Reactions. Sodium bisulfite adds to acetaldehyde to form a white crystalline addition compound, insoluble in ethyl alcohol and ether. This bisulfite addition compound is frequendy used to isolate and purify acetaldehyde, which may be regenerated with dilute acid. Hydrocyanic acid adds to acetaldehyde in the presence of an alkaU catalyst to form cyanohydrin the cyanohydrin may also be prepared from sodium cyanide and the bisulfite addition compound. Acrylonittile [107-13-1] (qv) can be made from acetaldehyde and hydrocyanic acid by heating the cyanohydrin that is formed to 600—700°C (77). Alanine [302-72-7] can be prepared by the reaction of an ammonium salt and an alkaU metal cyanide with acetaldehyde this is a general method for the preparation of a-amino acids called the Strecker amino acids synthesis. Grignard reagents add readily to acetaldehyde, the final product being a secondary alcohol. Thioacetaldehyde [2765-04-0] is formed by reaction of acetaldehyde with hydrogen sulfide thioacetaldehyde polymerizes readily to the trimer. [Pg.51]

Conversion of aldehydes to ketones via cyanohydrin derivatives (ethers) by alkylation or Michael addition also used with sdyl ethers, dialtylamlnonitnies (see also Stetter reaction). [Pg.370]

The in situ cyanosilylation of p-an1saldehyde is only one example of the reaction which can be applied to aldehydes and ketones in general. - The simplicity of this one-pot procedure coupled with the use of inexpensive reagents are important advantages over previous methods. The silylated cyanohydrins shown in the Table were prepared under conditions similar to those described here. Enolizable ketones and aldehydes have a tendency to produce silyl enol ethers as by-products in addition to the desired cyanohydrins. The... [Pg.199]

Hydroxy-B-homo-5a-cholestan-7-one acetate (54b) A solution of 3/3-hydroxy-5a-cholestan-7-one acetate (51b 5 g mp 146-148°) in dioxane-ethanol (100 ml, 1 1) is placed in a 250 ml three-necked flask equipped with a mechanical stirrer and thermometer and is cooled to 0° (iee-salt bath). Powdered potassium cyanide (7.3 g) is added portionwise with stirring. Acetic acid (8 ml) is then added dropwise with constant stirring over 30 min. The resultant mixture is stirred for 1 hr at 0° C and for an additional 2 hr at room temperature. It is then poured into ice water (200 g ice, 100 ml water) and after standing for 1 hr the precipitate is collected by filtration. The product is dissolved in ether (100 ml), the ether solution is washed with 5% sodium bicarbonate, water and dried over anhydrous sodium sulfate. The filtrate is evaporated at reduced pressure and the solid residue (5.1 g) is crystallized from ethyl acetate (30 ml) to yield 2.8 g of cyanohydrin (52b) mp 160-164° repeated crystallization from the same solvent gives a product mp 164-167°. An alternative method of isolation of the cyanohydrin is used when 100 g or larger quantities are worked up. The reaction mixture is poured directly into a mixture of ice water and sodium bicarbonate, the precipitate (mp 155-156°) is washed well with water, dried and used directly for the next step. [Pg.377]

Cyanohydrin (52b 5 g mp 160-164°) is dissolved in acetic acid (200 ml) and placed in a 2-liter hydrogenation flask. Adams catalyst (0.75 g) is added (for 100 g cyanohydrin use 7.5 gof catalyst) and the mixture is hydrogenated until the theoretical amount of hydrogen is taken up (477 ml). The catalyst is removed by filtration, the filtrate is transferred to a 600 ml beaker provided with a stirrer and thermometer, treated with water (20 ml) and cooled to 0° (ice-salt). A solution of sodium nitrite (10 g) in water (30 ml) is added dropwise with stirring at 0°. The reaction mixture is then stirred for additional 2 hr at room temperature, treated with water (100 ml) and, after standing overnight, the precipitate is collected by filtration. The product is dissolved in ether (50 ml), the ether solution is washed sequentially... [Pg.377]

Initial preparative work with oxynitrilases in neutral aqueous solution [517, 518] was hampered by the fact that under these reaction conditions the enzymatic addition has to compete with a spontaneous chemical reaction which limits enantioselectivity. Major improvements in optical purity of cyanohydrins were achieved by conducting the addition under acidic conditions to suppress the uncatalyzed side reaction [519], or by switching to a water immiscible organic solvent as the reaction medium [520], preferably diisopropyl ether. For the latter case, the enzymes are readily immobilized by physical adsorption onto cellulose. A continuous process has been developed for chiral cyanohydrin synthesis using an enzyme membrane reactor [61]. Acetone cyanhydrin can replace the highly toxic hydrocyanic acid as the cyanide source [521], Inexpensive defatted almond meal has been found to be a convenient substitute for the purified (R)-oxynitrilase without sacrificing enantioselectivity [522-524], Similarly, lyophilized and powered Sorghum bicolor shoots have been successfully tested as an alternative source for the purified (S)-oxynitrilase [525],... [Pg.172]

In 2000, Kagan and Holmes reported that the mono-lithium salt 10 of (R)- or (S)-BINOL catalyzes the addition of TMS-CN to aldehydes (Scheme 6.8) [52]. The mechanism of this reaction is believed to involve addition of the BI NO Late anion to TMS-CN to yield an activated hypervalent silicon intermediate. With aromatic aldehydes the corresponding cyanohydrin-TMS ethers were obtained with up to 59% ee at a loading of only 1 mol% of the remarkably simple and readily available catalyst. Among the aliphatic aldehydes tested cyclohexane carbaldehyde gave the best ee (30%). In a subsequent publication the same authors reported that the salen mono-lithium salt 11 catalyzes the same transformation with even higher enantioselectivity (up to 97% Scheme 6.8) [53], The only disadvantage of this remarkably simple and efficient system for asymmetric hydrocyanation of aromatic aldehydes seems to be the very pronounced (and hardly predictable) dependence of enantioselectivity on substitution pattern. Furthermore, aliphatic aldehydes seem not to be favorable substrates. [Pg.136]

In 1993 Corey et al. [60] reported a new enantioselective method for synthesis of chiral cyanohydrins [61] from aldehydes and trimethylsilyl cyanide (TMSCN) by the use of a pair of synergistic chiral reagents. Reaction of cyclohexane carbaldehyde 78 and trimethylsilyl cyanide (TMSCN) 79 in the presence of 20 mol % chiral magnesium complex 80 afforded the cyanohydrin TMS ether 81 in 85 % yield with 65 % ee. This modest enantioselectivity was fiirther enhanced to 94 % ee by addition of a further 12 mol % of the bis(oxazoline) 70 (Sch. 34). [Pg.82]

The preparations of hydroxypyrazines by primary syntheses have been described in Chapter II, and are summarized briefly, together with further data, as follows Section II.IG, from the reaction of a, 3-dicarbonyl compounds with ammonia [282 (cf. 281, 280), 283, 285] with additional information (1042, 1043) Section II.IM, from 1,2-dicarbonyl compounds with a-amino acids (311) Section II.IN, from a-amino acids through piperazine-2,5-diones (93,95,101,282,312,313)with additional data (843) Section 11.10, from aldehyde cyanohydrins ( ) [317-319 (cf. 282)1 and Section II.IP, from o-nitromandelonitrile and ethereal hydrogen cyanide (325). The preparations from a,iJ-dicarbonyl compounds with a,/ -diamino compounds are described in Section 11.2 (60, 80, 358, 359, 361-365b, 365d, 366-375) additional data have also been reported (824, 825, 827,845,846,971, 1044, 1045) and some reaction products have been isolated as the dihydro-pyrazines (340,341,357). [Pg.156]


See other pages where 1,2-addition reactions cyanohydrin ethers is mentioned: [Pg.233]    [Pg.343]    [Pg.100]    [Pg.233]    [Pg.59]    [Pg.28]    [Pg.327]    [Pg.44]    [Pg.45]    [Pg.45]    [Pg.545]    [Pg.47]    [Pg.213]    [Pg.383]    [Pg.26]    [Pg.139]    [Pg.127]   
See also in sourсe #XX -- [ Pg.551 ]

See also in sourсe #XX -- [ Pg.551 ]




SEARCH



Cyanohydrine

Cyanohydrins

Cyanohydrins addition reaction

© 2024 chempedia.info