Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Addition polymers, thermal degradation

The heat from the injection port liner combined with the GC column flow causes the volatiles contained in the sample to be thermally desorbed directly onto the GC column. This reduces or eliminates interfering components of the sample matrix. An example of this additive specific extraction is shown in Figure 2-2. This technique also can be used to obtain the purity and identity of neat additive standards which are not readily soluble. By altering the injection port temperature, an analyst can extract various types of additives without thermally degrading the sample matrix. There are no limitations on the additive/polymer combinations which can be analyzed. Another advantage of this technique is that it requires only a few milligrams of sample typically 2-5 milligrams per analysis. [Pg.21]

The mechanisms by which polymers undergo degradation in the human body are not yet completely understood. Examples of breakdown of these materials are illustrated by the embrittlement and excessive wear of polyester sockets exposed to the mechanical, biochemical and thermal stresses of the physiological milieu, as well as by the fatigue fractures, excessive wear and additional cross-linking (embrittlement) that have been observed in polyethylene sockets. [Pg.470]

David et al. [184] have shown that cool on-column injection and the use of deactivated thermally stable columns in CGC-FID and CGC-F1D-MS for quantitative determination of additives (antistatics, antifogging agents, UV and light stabilisers, antioxidants, etc.) in mixtures prevents thermal degradation of high-MW compounds. Perkins et al. [101] have reported development of an analysis method for 100 ppm polymer additives in a 500 p,L SEC fraction in DCM by means of at-column GC (total elution time 27 min repeatability 3-7 %). Requirements for the method were (i) on-line (ii) use of whole fraction (LVI) and (iii) determination of high-MW compounds (1200 Da) at low concentrations. Difficult matrix introduction (DMI) and selective extraction can be used for GC analysis of silicone oil contamination in paints and other complex analytical problems. [Pg.198]

Applications Applications of IC extend beyond the measurement of anions and cations that initially contributed to the success of the technique. Polar organic and inorganic species can also be measured. Ion chromatography can profitably be used for the analysis of ionic degradation products. For example, IC permits determination of the elemental composition of additives in polymers from the products of pyrolysis or oxidative thermal degradation. The lower detection limit for additives in polymers are 0.1% by PyGC... [Pg.272]

Applications Desorption chemical ionisation has proven potential in the analysis of thermally labile, nonvolatile and polar compounds [40,67,68], for the identification of unknown polymers and the study of the thermal degradation mechanisms of polymers. Considering the overall ease of DCI operation, the capability of analysing nonvolatile compounds, and the selectivity provided by choosing different reagent gases, DCI has found surprisingly few practitioners in the analysis of polymer additives. [Pg.365]

Contaminants in recycled plastic packaging waste (HDPE, PP) were identified by MAE followed by GC-MS analysis [290]. Fragrance and flavour constituents from first usage were detected. Recycled material also contained aliphatic hydrocarbons, branched alkanes and alkenes, which are also found in virgin resins at similar concentration levels. Moreover, aromatic hydrocarbons, probably derived from additives, were found. Postconsumer PET was also analysed by Soxhlet extraction and GC-MS most of the extracted compounds (30) were thermally degraded products of additives and polymers, whereas only a few derived from the original contents... [Pg.467]

Thermal degradation of Irganox 1076 in air was studied by means of HPLC-UV/VIS and by preparative HPLC-NMR. At 180 °C cinnamate and dimeric oxidation products are formed, and at 250 °C de-alkylation products are observed [660], On-line LC-NMR hardly covers a real need in polymer/additive analysis, as the off-line option is mostly perfectly adequate for that purpose. [Pg.521]

The addition of heat shifts the equilibrium concentrations away from the products and back towards the reactants, the monomers. This is one reason why processing these types of polymers is often more difficult than processing products of chain growth mechanisms. The thermal degradation process can be dramatically accelerated by the presence of the low molecular weight condensation products such as water. Polyester, as an example, can depolymerize rapidly if processed in the presence of absorbed or entrained water. [Pg.194]


See other pages where Addition polymers, thermal degradation is mentioned: [Pg.1880]    [Pg.1880]    [Pg.264]    [Pg.546]    [Pg.546]    [Pg.638]    [Pg.3]    [Pg.36]    [Pg.250]    [Pg.246]    [Pg.230]    [Pg.33]    [Pg.432]    [Pg.452]    [Pg.420]    [Pg.545]    [Pg.545]    [Pg.546]    [Pg.506]    [Pg.228]    [Pg.229]    [Pg.233]    [Pg.233]    [Pg.361]    [Pg.371]    [Pg.233]    [Pg.490]    [Pg.950]    [Pg.951]    [Pg.39]    [Pg.39]    [Pg.152]    [Pg.112]    [Pg.79]    [Pg.108]    [Pg.201]    [Pg.249]    [Pg.363]    [Pg.410]    [Pg.491]    [Pg.700]    [Pg.701]    [Pg.737]   
See also in sourсe #XX -- [ Pg.181 ]




SEARCH



Addition polymers polymer

Additive Degradation

Degradable polymers

Degradeable polymers

Polymer additives

Polymer degradation

Polymers, addition

Thermal additions

Thermal degradation

© 2024 chempedia.info