Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acyl-enzyme mechanism

The kinetic mechanism is an acyl-enzyme mechanism (Figure 9.7) the substrate binds non-covalently, the serine displaces the alcohol or amine part of the substrate to form an acyl-enzyme, and water then displaces the serine to yield the acid product and free enzyme. [Pg.263]

J. Fastrez and A.R. Fersht. 1973. Demonstration of the acyl-enzyme mechanism for the hydrolysis of peptides and anilides by chymotrypsin TJiocAe/wAfry 12 2025-2034. (PubMed)... [Pg.399]

If the a-chymotrypsin-catalysed hydrolysis of 4-nitrophenyl acetate [10] is monitored at 400 nm (to detect 4-nitrophenolate ion product) using relatively high concentrations of enzyme, the absorbance time trace is characterised by an initial burst (Fig. 5a). Obviously the initial burst cannot be instantaneous and if one uses a rapid-mixing stopped-flow spectrophotometer to study this reaction, the absorbance time trace appears as in Fig. 5b. Such observations have been reported for a number of enzymes (e.g. a-chymotrypsin [11], elastase [12], carboxypeptidase Y [13]) and interpreted in terms of an acyl-enzyme mechanism (Eqn. 7) in which the physical Michaelis complex, ES, reacts to give a covalent complex, ES (the acyl-enzyme) and one of the products (monitored here at 400 nm). This acyl-enzyme then breaks down to regenerate free enzyme and produce the other products. The dissociation constant of ES is k2 is the rate coefficient of acylation of the enzyme and A 3 is the deacylation rate coefficient. Detailed kinetic analysis of this system [11] has shown... [Pg.121]

Kinetic data at pH 7.0 and 20°C fitted the acyl-enzyme mechanism (Scheme 8.2) 29). [Pg.604]

Hydrolysis of esters and amides by enzymes that form acyl enzyme intermediates is similar in mechanism but different in rate-limiting steps. Whereas formation of the acyl enzyme intermediate is a rate-limiting step for amide hydrolysis, it is the deacylation step that determines the rate of ester hydrolysis. This difference allows elimination of the undesirable amidase activity that is responsible for secondary hydrolysis without affecting the rate of synthesis. Addition of an appropriate cosolvent such as acetonitrile, DMF, or dioxane can selectively eliminate undesirable amidase activity (128). [Pg.345]

In the chymotrypsiii mechanism, the nitrophenylacetate combines with the enzyme to form an ES complex. This is followed by a rapid second step in which an acyl-enzyme intermediate is formed, with the acetyl group covalently bound to the very reactive Ser . The nitrophenyl moiety is released as nitrophenolate (Figure 16.22), accounting for the burst of nitrophenolate product. Attack of a water molecule on the acyl-enzyme intermediate yields acetate as the second product in a subsequent, slower step. The enzyme is now free to bind another molecule of nitrophenylacetate, and the nitrophenolate product produced at this point corresponds to the slower, steady-state formation of product in the upper right portion of Figure 16.21. In this mechanism, the release of acetate is the rate-llmitmg step, and accounts for the observation of burst kinetics—the pattern shown in Figure 16.21. [Pg.516]

Amide hydrolysis is common in biological chemistry. Just as the hydrolysis of esters is the initial step in the digestion of dietary fats, the hydrolysis of amides is the initial step in the digestion of dietary proteins. The reaction is catalyzed by protease enzymes and occurs by a mechanism almost identical to that we just saw for fat hydrolysis. That is, an initial nucleophilic acyl substitution of an alcohol group in the enzyme on an amide linkage in the protein gives an acyl enzyme intermediate that then undergoes hydrolysis. [Pg.815]

Steps 3-4 of Figure 29.2 Hydrolysis The second nucleophilic acyl substitution step hydrolyzes the acyl enzyme and gives the free fatty acid by a mechanism analogous to that of the first two steps. Water is deprotonated by histidine to give hydroxide ion, which adds to the enzyme-bound acyl group. The tetrahedral... [Pg.1130]

The mechanism for the lipase-catalyzed reaction of an acid derivative with a nucleophile (alcohol, amine, or thiol) is known as a serine hydrolase mechanism (Scheme 7.2). The active site of the enzyme is constituted by a catalytic triad (serine, aspartic, and histidine residues). The serine residue accepts the acyl group of the ester, leading to an acyl-enzyme activated intermediate. This acyl-enzyme intermediate reacts with the nucleophile, an amine or ammonia in this case, to yield the final amide product and leading to the free biocatalyst, which can enter again into the catalytic cycle. A histidine residue, activated by an aspartate side chain, is responsible for the proton transference necessary for the catalysis. Another important factor is that the oxyanion hole, formed by different residues, is able to stabilize the negatively charged oxygen present in both the transition state and the tetrahedral intermediate. [Pg.172]

The starting point for much of the work described in this article is the idea that quinone methides (QMs) are the electrophilic species that are generated from ortho-hydro-xybenzyl halides during the relatively selective modification of tryptophan residues in proteins. Therefore, a series of suicide substrates (a subtype of mechanism-based inhibitors) that produce quinone or quinonimine methides (QIMs) have been designed to inhibit enzymes. The concept of mechanism-based inhibitors was very appealing and has been widely applied. The present review will be focused on the inhibition of mammalian serine proteases and bacterial serine (3-lactamases by suicide inhibitors. These very different classes of enzymes have however an analogous step in their catalytic mechanism, the formation of an acyl-enzyme intermediate. Several studies have examined the possible use of quinone or quinonimine methides as the latent... [Pg.357]

FIGURE 11.2 Hydrolysis of esters and peptides by serine proteases reaction scheme (a) and mechanism of action (b) (after Polgar15). (a) ES, noncovalent enzyme-substrate complex (Michaelis complex) EA, the acyl-enzyme PI and P2, the products, (b) X = OR or NHR (acylation) X = OH (deacylation). [Pg.360]

SCHEME 11.3 Postulated mechanisms for the inhibition of serine proteases by coumarin derivatives. NuH nucleophile. Pathway a suicide-type inactivation (suicide substrate). Pathway b transient inactivation by formation of a stable acyl-enzyme (alternate substrate-inhibitor). [Pg.366]

The acyl-enzyme can eliminate the 4-chlorine atom to generate this reactive intermediate that can then react with a nearby nucleophile such as His57 to give an alkylated acyl-enzyme derivative in which the inhibitor moiety is bound to the enzyme by two covalent bonds (Scheme 11.5). Inhibition is irreversible.59 The mechanism has been confirmed by X-ray structural analysis of protease-isocoumarin complexes. There is a cross-link between the inhibitor and the Serl95 and His57 residues of PPE.60 Human leukocyte elastase is also very efficiently inactivated.61... [Pg.372]

Catalytic site of lipase is known to be a serine-residue and lipase-catalyzed reactions are considered to proceed via an acyl-enzyme intermediate. The mechanism of lipase-catalyzed polymerization of divinyl ester and glycol is proposed as follows (Fig. 3). First, the hydroxy group of the serine residue nucleophilically attacks the acyl-carbon of the divinyl ester monomer to produce an acyl-enzyme intermediate involving elimination of acetaldehyde. The reaction of the intermediate with the glycol produces 1 1 adduct of both... [Pg.244]

A steady-state kinetics study for Hod was pursued to establish the substrate binding pattern and product release, using lH-3-hydroxy-4-oxoquinoline as aromatic substrate. The reaction proceeds via a ternary complex, by an ordered-bi-bi-mechanism, in which the first to bind is the aromatic substrate then the 02 molecule, and the first to leave the enzyme-product complex is CO [359], Another related finding concerns that substrate anaerobically bound to the enzyme Qdo can easily be washed off by ultra-filtration [360] and so, the formation of a covalent acyl-enzyme intermediate seems unlikely in the... [Pg.169]

The detailed mechanism of inhibition of TEM-2 (class A) enzyme with clavulanate has been established (Scheme 1) [23,24], The inhibition is a consequence of the instability of the acyl enzyme formed between the /1-lactam of clavulanate and the active site Ser-70 of the enzyme. In competition with deacylation, the clavulanate acyl-enzyme complex A undergoes an intramolecular fragmentation. This fragmentation initially provides the new acyl enzyme species B, which is at once capable of further reaction, including tautomeriza-tion to an entity C that is much less chemically reactive to deacylation. This species C then undergoes decarboxylation to give another key intermediate enamine D, which is in equilibrium with imine E. The imine E either forms stable cross-linked vinyl ether F, by interacting with Ser-130 or is converted to the hydrated aldehyde G to complete the inactivation. [Pg.230]

It is interesting to note that serine peptidases can, under special conditions in vitro, catalyze the reverse reaction, namely the formation of a peptide bond (Fig. 3.4). The overall mechanism of peptide-bond synthesis by peptidases is represented by the reverse sequence f-a in Fig. 3.3. The nucleophilic amino group of an amino acid residue competes with H20 and reacts with the acyl-enzyme intermediate to form a new peptide bond (Steps d-c in Fig. 3.3). This mechanism is not relevant to the in vivo biosynthesis of proteins but has proved useful for preparative peptide synthesis in vitro [17]. An interesting application of the peptidase-catalyzed peptide synthesis is the enzymatic conversion of porcine insulin to human insulin [18][19]. [Pg.69]

J. R. Alvarez-Idaboy, R. Gonzalez-Jonte, A. Hernandez-Laguna, Y. G. Smeyers, Reaction Mechanism of the Acyl-Enzyme Formation in /3-Lactam Hydrolysis by Means of Quantum Chemical Modeling , J. Mol. Struct. 2000, 204, 13 - 28. [Pg.93]

K. Brocklehurst, Acyl Group Transfer-Cysteine Proteases , in Enzyme Mechanisms , Eds. M. I. Page, A. Williams, The Royal Society of Chemistry, London, 1987, p. 140-158. [Pg.93]

D. S. Auld, Acyl Group Transfer-Metalloproteinases , in Enzyme Mechanisms , Eds. [Pg.95]

Lactamases (EC 3.5.2.6) inactivate /3-lactam antibiotics by hydrolyzing the amide bond (Fig. 5.1, Pathway b). These enzymes are the most important ones in the bacterial defense against /3-lactam antibiotics [15]. On the basis of catalytic mechanism, /3-lactamases can be subdivided into two major groups, namely Zn2+-containing metalloproteins (class B), and active-serine enzymes, which are subdivided into classes A, C, and D based on their amino acid sequences (see Chapt. 2). The metallo-enzymes are produced by only a relatively small number of pathogenic strains, but represent a potential threat for the future. Indeed, they are able to hydrolyze efficiently carbape-nems, which generally escape the activity of the more common serine-/3-lac-tamases [16] [17]. At present, however, most of the resistance of bacteria to /3-lactam antibiotics is due to the activity of serine-/3-lactamases. These enzymes hydrolyze the /3-lactam moiety via an acyl-enzyme intermediate similar to that formed by transpeptidases. The difference in the catalytic pathways of the two enzymes is merely quantitative (Fig. 5.1, Pathways a and b). [Pg.189]

Mechanistic investigations have shown that these compounds behave as suicide inhibitors (preferably called mechanism-based inactivators) in the sense that they are recognized by /3-lactamases as substrates, but the great stability of the acyl-enzyme intermediate blocks turnover of the enzyme [46] [47]. /3-Lactamase inhibitors can be divided into two classes, class I and class II class-I inhibitors (e.g., clavulanic acid (5.12)), in contrast to those of class II (e.g., olivanic acid (5.15)), have a heteroatom at position 1 that can lead to ring opening at C(5). The mechanistic consequences of this difference in structure are illustrated by the general scheme in Fig. 5.3. [Pg.192]

Some cephalosporins can be both substrates and inhibitors of /3-lactamases. The acyl-enzyme intermediate can undergo either rapid deacylation (Fig. 5.4, Pathway a) or elimination of the leaving group at the 3 -position to yield a second acyl-enzyme derivative (Fig. 5.4, Pathway b), which hydrolyzes very slowly [35][53], Thus, cephalosporins inactivate /3-lactamases by a mechanism similar to that described above for class-II inhibitors. It has been hypothesized that differences in the rate of deacylation of the acyl-enzyme intermediates derive from their different abilities to form H-bonds. A H-bond to NH in Fig. 5.4, Pathway a, may be necessary to assure a catalytically essential conformation of the enzyme, whereas the presence of a H-bond acceptor in Fig. 5.4, Pathway b, may drive the enzyme to an unproductive conformation. The ratio between hydrolysis and elimination, and, consequently, the relative importance of substrate and inhibitor behaviors of cephalosporins, is determined by the nature of the leaving group at C(3 ). An appropriate substitution at C(3 ) of cephalosporins may, therefore, increase the /3-lactamase inhibitory properties and yield potentially better antibiotics [53]. [Pg.194]

Fig. 5.4. Inactivation of /3-lactamases by cephalosporins (Fig. 5.1, Pathway b). The mechanism of this inactivation is similar to that of class-II inhibitors (Fig. 5.3, Pathway b) and is based on the slow hydrolysis of the acyl-enzyme complex (Pathway b). The normal deacylation of the acyl-enzyme complex represented by Pathway a results in the lost of antibacterial activity of the drug. The ratio between Pathways a and b is determined by the nature of the... Fig. 5.4. Inactivation of /3-lactamases by cephalosporins (Fig. 5.1, Pathway b). The mechanism of this inactivation is similar to that of class-II inhibitors (Fig. 5.3, Pathway b) and is based on the slow hydrolysis of the acyl-enzyme complex (Pathway b). The normal deacylation of the acyl-enzyme complex represented by Pathway a results in the lost of antibacterial activity of the drug. The ratio between Pathways a and b is determined by the nature of the...

See other pages where Acyl-enzyme mechanism is mentioned: [Pg.95]    [Pg.487]    [Pg.132]    [Pg.95]    [Pg.487]    [Pg.132]    [Pg.204]    [Pg.495]    [Pg.517]    [Pg.520]    [Pg.172]    [Pg.403]    [Pg.210]    [Pg.361]    [Pg.238]    [Pg.302]    [Pg.191]    [Pg.238]    [Pg.251]    [Pg.379]    [Pg.184]    [Pg.194]   
See also in sourсe #XX -- [ Pg.121 , Pg.188 ]

See also in sourсe #XX -- [ Pg.121 , Pg.188 ]




SEARCH



Acylation enzymic

Acylation mechanism

Enzyme acylation

Enzyme mechanism

© 2024 chempedia.info