Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Activated methylene compound derivatives

Knoevenagel reaction. The condensation of an aldehyde with an active methylene compound (usually malonic acid or its derivatives) in the presence of a base is generally called the Knoevenagel reaction. Knoevenagel found that condensations between aldehydes and malonic acid are effectively catalysed by ammonia and by primary and secondary amines in alcoholic solution of the organic amines piperidine was regarded as the best catalyst. [Pg.710]

Aldol Addition and Related Reactions. Procedures that involve the formation and subsequent reaction of anions derived from active methylene compounds constitute a very important and synthetically useful class of organic reactions. Perhaps the most common are those reactions in which the anion, usually called an enolate, is formed by removal of a proton from the carbon atom alpha to the carbonyl group. Addition of this enolate to another carbonyl of an aldehyde or ketone, followed by protonation, constitutes aldol addition, for example... [Pg.471]

Diketene is used to C-acetoacetylate aromatic compounds in the presence of aluminum trichloride [7446-70-0]. Benzene [71-43-2] and diketene react to produce acetoacet5lben2ene [93-91-4]. Pyrrole [109-97-7] and diketene react to produce 2-acetoacet5lpyrrole [22441-25-4]. The C-acetoacetyl derivatives of active methylene compounds such as cyanoacetates, malonodinitrile [109-77-3] and Meldmm s acid [2033-24-1], and olefins can be prepared using diketene. [Pg.478]

Organosodium compounds are prepared from sodium and other organometaUic compounds or active methylene compounds by reaction with organic haUdes, cleavage of ethers, or addition to unsaturated compounds. Some aromatic vinyl compounds and aHyUc compounds also give sodium derivatives. [Pg.164]

The widespread use of cinnamic derivatives has led to the pursuit of reUable methods for thek dkect synthesis. Commercial processes have focused on condensation reactions between ben2aldehyde and a number of active methylene compounds for assembly of the requisite carbon skeleton. The presence of a disubstituted carbon—carbon double bond in the sidechain of these chemicals also gives rise to the existence of two distinct stereoisomers, the cis or (Z)- and trans or (E)- isomers ... [Pg.173]

Isatin (190) is a compound with interesting chemistry. It can be iV-acetylated with acetic anhydride, iV-methylated via its sodium or potassium salt and O-methylated via its silver salt. Oxidation of isatins with hydrogen peroxide in methanolic sodium methoxide yields methyl anthranilates (81AG(E)882>. In moist air, O-methylisatin (191) forms methylisatoid (192). Isatin forms normal carbonyl derivatives (193) with ketonic reagents such as hydroxylamine and phenylhydrazine and the reactive 3-carbonyl group also undergoes aldol condensation with active methylene compounds. Isatin forms a complex derivative, isamic acid (194), with ammonia (76JCS(P1)2004). [Pg.77]

Rates of debromination of bromonitro-thiophenes and -selenophenes with sodium thio-phenoxide and sodium selenophenoxide have been studied. Selenophene compounds were about four times more reactive than the corresponding thiophene derivatives. The rate ratio was not significantly different whether attack was occurring at the a- or /3-position. As in benzenoid chemistry, numerous nucleophilic displacement reactions are found to be copper catalyzed. Illustrative of these reactions is the displacement of bromide from 3-bromothiophene-2-carboxylic acid and 3-bromothiophene-4-carboxylic acid by active methylene compounds (e.g. AcCH2C02Et) in the presence of copper and sodium ethoxide (Scheme 77) (75JCS(P1)1390). [Pg.78]

Standard condensation reactions of formylfurazans with a variety of active methylene compounds have been performed to give reactive ylidene derivatives (99MI7) (Scheme 67). Yields ranging from 8% to 95% have been obtained. [Pg.101]

Ylidene-substituted furazans, which may be used in some cases without purification, are excellent building blocks for the construction of heteroaryl substituted derivatives. Simple variations in the substituents on the furazan ring, the active methylene compounds, and reagents can lead to a variety of products (99MI7) (Scheme 68). [Pg.101]

OOOKGSlOO) (Scheme 134). Triazolylfurazans 207 were also prepared by condensation of azidofurazans with active methylene compounds in the presence of MgCOs (99MI1). A variety of azidofurazans and -furoxans reacted similarly to form the corresponding triazole derivatives. [Pg.132]

The reaction of A-acyliminium ions with nucleophilic carbon atoms (also called cationic x-amidoalkylation) is a highly useful method for the synthesis of both nitrogen heterocycles and open-chain nitrogen compounds. A variety of carbon nucleophiles can be used, such as aromatic compounds, alkcncs, alkyncs, carbcnoids, and carbanions derived from active methylene compounds and organometallics. [Pg.803]

A further example of an azo coupling reaction with an activated methylene compound (12.91), followed by ring closure to give a pyridazine derivative (12.92) in good yield (66%) was decribed by Gewald and Hain (1984). The reductive treatments of 12.92 give the pyrrole compounds 12.93 and 12.94 in 70% yield (Scheme 12-45). [Pg.338]

The imide nitrogen atom was also most reactive to a variety of electrophilic species (hydrogen halides, pseudohalogens, and alkyl halides) in the parent Rimidophosphazenes, R(C—NH)-N=PPh3. With t-butyl hypochlorite the /V-chloro-derivatives, R(C=NCl)-N=PPh3, were obtained. R/ -Vinyl-phenylphosphazenes have been prepared by condensation of aldehydes with active methylene compounds ... [Pg.205]

The reaction with active methylene compounds results in the hydrogen abstraction to give the alcohol and the organogold derivatives.178... [Pg.1005]

The nitration of active methylene compounds generally proceeds via the reaction of carbanionic intermediates with an electrophilic nitrating agent such as alkyl nitrate (alkyl nitrate nitration). Details of this process are well documented in the reviews.38 The alkyl nitrate nitration method has been used extensively for the preparation of arylnitromethanes. The toluene derivatives, which have electron-withdrawing groups are nitrated with alkyl nitrates in the presence of KNH2 in liquid ammonia (Eqs. 2.19 and 2.20).39... [Pg.10]

Sulfanyl derivative 285 treated with active methylene compounds provides corresponding 1,2-dinucleophilic adducts 286-289 in good yields (Scheme 38) <2001PS(174)255>. [Pg.408]

A number of novel spiro heterocycles, including the triazepinethione 146 have been derived from 3-hydroxy-3-(2-oxocyclohexyl)indolin-2-one 145 by condensation with active methylene compounds <00SC1257>. A condensation process was also used to prepare tricyclic triazepinones related to the non-nucleoside reverse transcriptase inhibitor nevirapine <00JHC1539>. [Pg.371]

Condensation of aryl halides with various active methylene compounds is readily promoted by catalytic action of palladium to give the corresponding arene derivatives containing a functionalized ethyl group [7]. Yamanaka et al. extended this chemistry to haloazoles including oxazoles, thiazoles and imidazoles [8]. Thus, in the presence of Pd(Ph3P)4,2-chlorooxazole was refluxed with phenylsulfonylacetonitrile and NaH to form 4,5-diphenyl-a-phenylsulfonyl-2-oxazoloacetonitrile, which existed predominantly as its enamine tautomer. In a similar fashion, 4-bromooxazole and 5-bromooxazole also were condensed with phenylsulfonylacetonitrile under the same conditions. [Pg.324]

Condensation of active methylene compounds with cyanoacetic hydrazide-derived hydrazones led to a one-pot formation of pyridine and triazole rings. [Pg.619]

Addition of carbanions (which may be electrochemically generated), derived from active methylene compounds (such as fluorene or indene193), to nitrosobenzene produces the intermediate181 70, which is dehydrated to the azomethine 71 or may be oxidized to the nitrone derivative 72, as illustrated by Scheme 8. [Pg.450]

Examples of the Michael-type addition of carbanions, derived from activated methylene compounds, with electron-deficient alkenes under phase-transfer catalytic conditions have been reported [e.g. 1-17] (Table 6.16). Although the basic conditions are normally provided by sodium hydroxide or potassium carbonate, fluoride and cyanide salts have also been used [e.g. 1, 12-14]. Soliddiquid two-phase systems, with or without added organic solvent [e.g. 15-18] and polymer-supported catalysts [11] have been employed, as well as normal liquiddiquid conditions. The micellar ammonium catalysts have also been used, e.g. for the condensation of p-dicarbonyl compounds with but-3-en-2-one [19], and they are reported to be superior to tetra-n-butylammonium bromide at low base concentrations. [Pg.274]

Finally, Nikishin and coworkers have reported that the mediated oxidations of doubly activated methylene compounds can be used to synthesize cyclopropane derivatives (Scheme 17) [30]. Reactions using dimethyl malonate, ethyl cyanoacetate, and malononitrile were studied. Metal halides were used as mediators. When the activated methylene compound was oxidized in the absence of a carbonyl compound, three of the substrate molecules were coupled together to form the hexasubstituted product. Interestingly, when the ethyl cyanoacetate substrate was used the product was formed in a stereoselective fashion (18b). In an analogous reaction, oxidation of the activated methylene compounds in the presence of ketones and aldehydes led to the formation of cyclopropane products that had incorporated the ketone or aldehyde (20). In the case of 19a, the reactions typically led to a mixture of stereoisomers. [Pg.62]

Decarboxylation of 1,3-dimethylorotic acid in the presence of benzyl bromide yields 6-benzyl-1,3-dimethyluracil and presumably involves a C(6) centered nucleophilic intermediate which could nonetheless have either a carbene or ylide structure. Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry has been used to explore the gas-phase reactions of methyl nitrate with anions from active methylene compounds anions of aliphatic ketones and nitriles react by the 5n2 mechanism and Fco reactions yielding N02 ions are also observed nitronate ions are formed on reaction with the carbanions derived from toluenes and methylpyridines. [Pg.381]

Reactions of tropone 124 with phenylacetonitrile (62YZ892) and transformations of type 124 derivatives by several active methylene compounds (63MI2) result in rearrangements to form 8-quinolinol derivatives. (Thia-zolo[4,5-i)]tropones prepared from 124 will be treated in Section II,B,l,f.)... [Pg.109]

Triazoles have also been obtained when the carbon atom adjacent to the activated methylene group carries a nitrogen function (i.e., amides, nitriles, amidines, and imines - ). In many of these cases it is impossible to decide, without N-labeling experiments, whether the third nitrogen of the triazole ring is derived from the toluene-p-sulfonyl azide or from the activated methylene compound. With amides, amidines, and nitriles, the first possibility seems more reasonable, but with imines, the third nitrogen is that of the imino group (Scheme... [Pg.46]

The Knoevenagel reaction consists in the condensation of aldehydes or ketones with active methylene compounds usually performed in the presence of a weakly basic amine (Scheme 29) [116], It is well-known that aldehydes are much more reactive than ketones, and active methylene substrates employed are essentially those bearing two electron-withdrawing groups. Among them, 1,3-dicarbonyl derivatives are particularly common substrates, and substances such as malonates, acetoacetates, acyclic and cyclic 1,3-diketones, Meldrum s acid, barbituric acids, quinines, or 4-hydroxycoumarins are frequently involved. If Z and Z groups are different, the Knoevenagel adduct can be obtained as a mixture of isomers, but the reaction is thermodynamically controlled and the major product is usually the more stable one. [Pg.246]

The activated Ba(OH)2 catalyst was successfully used for the Michael reactions of chalcone with active methylene compounds 290), as well as for the Michael reaction of other benzylidene derivatives of acetone, butanone, 3-methylbutanone, 4-methyl-2-pentanone, and 3,3-dimethylbutanone with ethyl acetoacetate and diethyl malonate. The reaction with diethyl malonate gave good yields of the Michael adduct (between 65 and 93%), whereas with ethyl acetoacetate various products were obtained, depending on temperature and amount of catalyst (Scheme 43) 291). Thus, by varying the reaction conditions, it was possible to obtain a single product with practically 100% selectivity, the yields being higher than those obtained with soluble catalysts, such as KOH, NaOH, or piperidine. [Pg.290]

Thermolysis of the thiadiazole (164) leads to elimination of isocyanate and sulfur giving the triazine derivative (167). If the thermolysis is carried out in the presence of phenols 2-aryl-benzimidazoles (168) are produced <85JCS(P1)1007>. The S—N bond of (157) is readily cleaved with both N- and C-nucleophiles. Thus, treatment of (157) with an excess of amine gives the sulfenamide (169) (Scheme 39) and reaction of (157) with active methylene compounds leads to derivatives of type (170) (Scheme 39) which on heating furnish (171). Cyanide ion inserts into the S—N bond of (164), probably via the intermediate (172) which immediately recyclizes to give the thiadiazinone (173) (Scheme 40) <85JCS(P1)1007>. [Pg.330]

Chloro derivatives of 4,5-dichloropyridazin-3(2//)-one and 4-chloro-5-methoxypyridazin-3(2//)-one have been synthesized by treating the pyridazinones with NaOCl in acetic acid <2005S1136>. These pyridazinones can be used as reagents for the chlorination of active methylene compounds (see Section 8.01.8.2). [Pg.27]

Reaction of the malononitrile-derived diazene 275 with active methylene compounds proceeds via addition to a cyano group followed by intramolecular hydrazide or thiohydrazide formation, pyridazin-3(2//)-ones and thio analogs 276 are respectively produced (Equation 70) <1999JCM8>. [Pg.81]


See other pages where Activated methylene compound derivatives is mentioned: [Pg.297]    [Pg.370]    [Pg.136]    [Pg.73]    [Pg.85]    [Pg.282]    [Pg.111]    [Pg.13]    [Pg.353]    [Pg.81]    [Pg.660]    [Pg.435]    [Pg.714]    [Pg.243]    [Pg.92]    [Pg.93]    [Pg.402]    [Pg.440]   


SEARCH



Activated methylene

Activated methylene compounds

Methylene compounds

Methylene derivatives

Methylenes, activated methylene

© 2024 chempedia.info