Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Actinide characterization

In 1945 Glenn Seaborg proposed that actinium was the first member of a family of fifteen elements (the actinides ), characterized by the possession of the 5/orbitals. His proposal was based on the similarity of the chemistry of actinium to that of lanthanum (atomic number 57), which is the first member of the fifteen elements of the trivalent lanthanide family. Actinium is somewhat more basic than lanthanum but, like lanthanum, forms compounds that have strongly ionic bonds. Many actinium compounds are... [Pg.43]

Thousands of compounds of the actinide elements have been prepared, and the properties of some of the important binary compounds are summarized in Table 8 (13,17,18,22). The binary compounds with carbon, boron, nitrogen, siUcon, and sulfur are not included these are of interest, however, because of their stabiUty at high temperatures. A large number of ternary compounds, including numerous oxyhaUdes, and more compHcated compounds have been synthesized and characterized. These include many intermediate (nonstoichiometric) oxides, and besides the nitrates, sulfates, peroxides, and carbonates, compounds such as phosphates, arsenates, cyanides, cyanates, thiocyanates, selenocyanates, sulfites, selenates, selenites, teUurates, tellurites, selenides, and teUurides. [Pg.221]

The phosphido complex, Th(PPP)4 [143329-04-0], where PPP = P(CH2CH2P(CH2)2)2) has been prepared and fully characterized (35) and represents the first actinide complex containing exclusively metal—phosphoms bonds. The x-ray stmctural analysis indicated 3-3-electron donor phosphides and 1-1-electron phosphide, suggesting that the complex is formally 22-electron. Similar to the amido system, this phosphido compound is also reactive toward insertion reactions, especially with CO, which undergoes a double insertion (35,36). [Pg.38]

If pure, the carbides of Groups 1 and 2 are characterized by their transparency and lack of conductivity. The carbides of Group 3, ie. Sc, Y, the lanthanides, and the actinides, ate opaque. Some, depending on composition, show metallic luster and electroconductivity. The cation may exist in the MC2 phases of this group, and the remaining valence electron apparendy imparts pardy metaUic character to these compounds. [Pg.439]

In view of the magnitude of crystal-field effects it is not surprising that the spectra of actinide ions are sensitive to the latter s environment and, in contrast to the lanthanides, may change drastically from one compound to another. Unfortunately, because of the complexity of the spectra and the low symmetry of many of the complexes, spectra are not easily used as a means of deducing stereochemistry except when used as fingerprints for comparison with spectra of previously characterized compounds. However, the dependence on ligand concentration of the positions and intensities, especially of the charge-transfer bands, can profitably be used to estimate stability constants. [Pg.1273]

Complex chlorides of plutonium (34, 41) do not present such a wide range of formulae as the complex fTuorides but we have at hand thermodynamic information on two important species which have also been characterized with other actinides. In table II we have disregarded the complex halides for which no thermodynamic data are available. The enthalpy of formation of Cs2NaPuClg(c) (55) and Cs2PuClg(c) (56) have been obtained from enthalpy of solution measurements."The selected (8) values are AHf(Cs2NaPuCl6,c) =... [Pg.87]

It is also apparent that there remains much to be done in developing our understanding of the model interactions that best characterize the spectra of higher-valent Pu compounds and indeed of the actinides in general. The synthesis of new compounds with a variety of different site symmetries could be of particular value in developing more detailed crystal-field... [Pg.197]

Hexaborides of a CaBg type are formed by K, the alkaline earths, Y and the larger lanthanides, as well as Th and some actinides ". The crystal structure of these compounds with cubic symmetry (Pm3m, O, ) (see Fig. 1) is characterized by a three-dimensional skeleton of Bg boron octahedra, the interstices of which are filled by metal atoms. The connection between two octahedra is by a B—B bond of length 1.66 X 10 pm, whereas the B—B bond lengths in one octahedron are 1.76 X 10 pm. ... [Pg.222]

Compounds containing group-lIB-transition-metal bonds arc characterized for almost every transition metal. Although there are more derivatives containing Hg than Zn or Cd, there is no difficulty in producing analogous compounds of each of these metals. No compound is known in which Zn, Cd or Hg is bonded to either lanthanide or actinide elements. [Pg.541]

One of the first bed materials was based on the extractant diamyl amylphosphonate (DAAP marketed under the name U-TEVA-Spec ) and was designed for purification of the tetravalent actinides (U (IV), Th (IV), Pu (IV)) and hexavalent uranium (U(VI)). This material is characterized by high (>10-100) distribution coefficients for U and Th in significant (>3 M) concentrations of both nitric and hydrochloric acids, and so is useful for both U and Th purification (Horwitz et al. 1992 Goldstein et al. 1997 Eikenberg et al. 2001a). [Pg.28]

Fjeld RA, DeVol TA, Goff RW, Blevins MD, Brown DD, luce SM, Elzerman AW (2001) Characterization of the mobilities of selected actinides and fission/activation products in laboratory columns containing subsurface material from the Snake River Plain. Nucl Tech 135 92-108 Fleischer RL (1980) Isotopic disequilibrium of uranium alpha-recoil damage and preferential solution effects. Science 207 979-981... [Pg.357]

Quantum chemists have developed considerable experience over the years in inventing new molecules by quantum chemical methods, which in some cases have been subsequently characterized by experimentalists (see, for example, Refs. 3 and 4). The general philosophy is to explore the Periodic Table and to attempt to understand the analogies between the behavior of different elements. It is known that for first row atoms chemical bonding usually follows the octet rule. In transition metals, this rule is replaced by the 18-electron rule. Upon going to lanthanides and actinides, the valence f shells are expected to play a role. In lanthanide chemistry, the 4f shell is contracted and usually does not directly participate in the chemical bonding. In actinide chemistry, on the other hand, the 5f shell is more diffuse and participates actively in the bonding. [Pg.250]

Another issue involving actinide complexes in the zero formal oxidation state is the possible formation of actinide-actinide bonds. For example, the molecule U2 has recently been described theoretically,6 in which the electronic structure is characterized by the existence of a large number of nearly... [Pg.250]

Herein we have reported the synthesis, characterization, and reactivity of both transition metal and actinide elements supported by tripodal ligand scaffolds. The carbon-anchored ligands TIME normally form polynuclear species while the nitrogen-anchored ligands TIMEN can coordinate to transition metals in a 1 1, fashion, rendering the coordinated metal centers in well-protected pockets. [Pg.27]

Often the products of nuclear reactions have very short half-lives. This is especially true for the heaviest elements obtained by bombardment of heavy targets with heavy ions. To identify and characterize such short-lived nuclides, fast separations are required solvent extraction techniques are well suited to provide the required fast separations. For example, the SISAK method [68] has been successfully used in conjunction with in-line gas jet separators at heavy ion accelerators to identify short half-life actinide isotopes produced by collision of heavy atoms. The Sisak method involves use of centrifugal contactors, with phase residence times as low as tenths of a second, in conjunction with in-line radiometric detection equipment. [Pg.541]

There is some question regarding where the transactinide series ends and where the superactinide series and super heavy elements (also known as SHE) begin. Some references start the superactinides and SHEs at Z-114, Z-123, or Z-126, and others start at Z-141 and continue to Z-153, or even higher to Z-202. These series of elements are characterized by single electrons successively added to inner shells and orbital of the atom until they are fiUed. This is somewhat similar to the way electrons are added to the atoms of the lanthanide and actinide series. [Pg.357]

The transeinsteinium actinides, fermium (Fm), mendelevium (Md), nobelium (No), and lawrencium (Lr), are not available in weighable (> ng) quantities, so these elements are unknown in the condensed bulk phase and only a few studies of their physicochemical behavior have been reported. Neutral atoms of Fm have been studied by atomic beam magnetic resonance 47). Thermochromatography on titanium and molybdenum columns has been employed to characterize some metallic state properties of Fm and Md 61). This article will not deal with the preparation of these transeinsteinium metals. [Pg.4]

Table XI gives the room-temperature, atmospheric pressure crystal structures, densities, and atomic volumes, along with the melting points and standard enthalpies of vaporization (cohesive energies), for the actinide metals. These particular physical properties have been chosen as those of concern to the preparative chemist who wishes to prepare an actinide metal and then characterize it via X-ray powder diffraction. The numerical values have been selected from the literature by the authors. Table XI gives the room-temperature, atmospheric pressure crystal structures, densities, and atomic volumes, along with the melting points and standard enthalpies of vaporization (cohesive energies), for the actinide metals. These particular physical properties have been chosen as those of concern to the preparative chemist who wishes to prepare an actinide metal and then characterize it via X-ray powder diffraction. The numerical values have been selected from the literature by the authors.
Many substituted uranocenes have been made and there is a substantial body of organometallic chemistry of uranocene derivatives now known 16, 17). Some of this chemistry will be mentioned in passing but wiU not be covered in a systematic way since other reviews of the organic chemistry are available 18). The only other actinide cyclooctatetraene complex structurally characterized to date is bis[(l,3,5,7-tetramethylcyclooctatetraenyl]uranium(IV) 19), which was of interest because the presence of methyl groups allowed the planarity and relative orientation of the dianion rings to be determined. Crystal and molecular parameters for these three actinide compounds are summarized in Table 1. [Pg.25]


See other pages where Actinide characterization is mentioned: [Pg.252]    [Pg.215]    [Pg.221]    [Pg.224]    [Pg.224]    [Pg.38]    [Pg.41]    [Pg.333]    [Pg.1251]    [Pg.1268]    [Pg.1273]    [Pg.1361]    [Pg.86]    [Pg.360]    [Pg.213]    [Pg.214]    [Pg.355]    [Pg.29]    [Pg.290]    [Pg.181]    [Pg.137]    [Pg.270]    [Pg.246]    [Pg.357]    [Pg.390]    [Pg.504]    [Pg.701]    [Pg.20]    [Pg.394]   
See also in sourсe #XX -- [ Pg.220 ]

See also in sourсe #XX -- [ Pg.188 ]




SEARCH



© 2024 chempedia.info