Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acrylonitrile Specifications

Type DTA T (°6 Nominal % Acrylonitrile Specific Gravity Average Mooney Viscosity Anti- Oxidant Special Properties Potential Uses... [Pg.88]

The combination of durability and clarity and the ability to tailor molecules relatively easily to specific applications have made acryflc esters prime candidates for numerous and diverse applications. At normal temperatures the polyacrylates are soft polymers and therefore tend to find use in applications that require flexibility or extensibility. However, the ease of copolymerizing the softer acrylates with the harder methacrylates, styrene, acrylonitrile, and vinyl acetate, allows the manufacture of products that range from soft mbbers to hard nonfilm-forming polymers. [Pg.171]

Standard test methods for chemical analysis have been developed and pubUshed (74). Included is the determination of commonly found chemicals associated with acrylonitrile and physical properties of acrylonitrile that are critical to the quaUty of the product (75—77). These include determination of color and chemical analyses for HCN, quiaone inhibitor, and water. Specifications appear in Table 10. [Pg.185]

Homogeneous GopolymeriZation. Nearly all acryhc fibers are made from acrylonitrile copolymers containing one or more additional monomers that modify the properties of the fiber. Thus copolymerization kinetics is a key technical area in the acryhc fiber industry. When carried out in a homogeneous solution, the copolymerization of acrylonitrile foUows the normal kinetic rate laws of copolymerization. Comprehensive treatments of this general subject have been pubhshed (35—39). The more specific subject of acrylonitrile copolymerization has been reviewed (40). The general subject of the reactivity of polymer radicals has been treated in depth (41). [Pg.278]

Synthetic. The main types of elastomeric polymers commercially available in latex form from emulsion polymerization are butadiene—styrene, butadiene—acrylonitrile, and chloroprene (neoprene). There are also a number of specialty latices that contain polymers that are basically variations of the above polymers, eg, those to which a third monomer has been added to provide a polymer that performs a specific function. The most important of these are products that contain either a basic, eg, vinylpyridine, or an acidic monomer, eg, methacrylic acid. These latices are specifically designed for tire cord solutioning, papercoating, and carpet back-sizing. [Pg.253]

Fig. 15. Oxygen permeability versus 1/specific free volume at 25 °C (30). 1. Polybutadiene 2. polyethylene (density 0.922) 3. polycarbonate 4. polystyrene 5. styrene-acrylonitrile 6. poly(ethylene terephthalate) 7. acrylonitrile barrier polymer 8. poly(methyl methacrylate) 9. poly(vinyl chloride) 10. acrylonitrile barrier polymer 11. vinyUdene chloride copolymer 12. polymethacrylonitrile and 13. polyacrylonitrile. See Table 1 for unit conversions. Fig. 15. Oxygen permeability versus 1/specific free volume at 25 °C (30). 1. Polybutadiene 2. polyethylene (density 0.922) 3. polycarbonate 4. polystyrene 5. styrene-acrylonitrile 6. poly(ethylene terephthalate) 7. acrylonitrile barrier polymer 8. poly(methyl methacrylate) 9. poly(vinyl chloride) 10. acrylonitrile barrier polymer 11. vinyUdene chloride copolymer 12. polymethacrylonitrile and 13. polyacrylonitrile. See Table 1 for unit conversions.
The theory of radiation-induced grafting has received extensive treatment. The direct effect of ionizing radiation in material is to produce active radical sites. A material s sensitivity to radiation ionization is reflected in its G value, which represents the number of radicals in a specific type (e.g., peroxy or allyl) produced in the material per 100 eV of energy absorbed. For example, the G value of poly(vinyl chloride) is 10-15, of PE is 6-8, and of polystyrene is 1.5-3. Regarding monomers, the G value of methyl methacrylate is 11.5, of acrylonitrile is 5.6, and of styrene is >0.69. [Pg.508]

Acetonitrile and hydrogen cyanide are hy-products that may he recovered for sale. Acetonitrile (CH3CN) is a high polarity aprotic solvent used in DNA synthesizers, high performance liquid chromatography (HPLC), and electrochemistry. It is an important solvent for extracting butadiene from C4 streams. Table 8-1 shows the specifications of acrylonitrile, HCN, and acetonitrile. ... [Pg.218]

The ratio of acrylonitrile/butadiene could be adjusted to obtain a polymer with specific properties. Increasing the acrylonitrile ratio increases oil resistance of the rubber, but decreases its plasticizer compatibility. [Pg.354]

Boronic acids (69 and 70) (Fig. 45) with more than one boronic acid functionality are known to form a polymer system on thermolysis through the elimination of water.93 Specifically, they form a boroxine (a boron ring system) glass that could lead to high char formation on burning. Tour and co-workers have reported the synthesis of several aromatic boronic acids and the preparation of their blends with acrylonitrile-butadiene-styrene (ABS) and polycarbonate (PC) resins. When the materials were tested for bum resistance using the UL-94 flame test, the bum times for the ABS samples were found to exceed 5 minutes, thereby showing unusual resistance to consumption by fire.94... [Pg.50]

There is a test that can detect acrylonitrile in blood. In addition, the major breakdown products of acrylonitrile by the body (termed metabolites) can be measured in urine. Some breakdown products that can be measured are specific to acrylonitrile. However, one breakdown product of the body (cyanide) that is commonly measured is not specific to acrylonitrile exposure, and the results can be affected by cigarette smoking. Because special equipment is needed, these tests cannot be performed routinely in your doctor s office. There is not enough information at present to use the results of such tests to predict the nature or severity of any health effects that may result from exposure to acrylonitrile. Further information on how acrylonitrile can be measured in exposed humans is presented in Chapters 2 and 6. [Pg.12]

Chronic exposure to acrylonitrile has been reported to result in early deaths in male and female rats (Quast et al. 1980a). A statistically significant increase in mortality was observed within the first year of a study in which animals were exposed to 80 ppm of acrylonitrile. At 20 ppm, increased deaths were noted in females during the last 10 weeks of the study. The cause of death was not specifically identified. [Pg.30]

Immunotoxicity. No information was found on the immunological effects of acrylonitrile in humans or animals by any route of exposure. Because no Immunopathological effects have been reported in subchronic and chronic studies involving multiple species, additional studies employing a more specific testing battery are not warranted at this time. [Pg.70]

Effects produced by exposure to acrylonitrile, particularly after acute exposures, are characteristic of cyanide toxicity. These effects can be detected in people exposed by evaluating signs and symptoms such as limb weakness, labored and irregular breathing, dizziness and impaired judgement, cyanosis and convulsions. While tests are not specific for acrylonitrile-induced toxicity, they do identify potential health impairment. Studies to develop more specific biomarkers of acrylonitrile-induced effects would be useful in assessing the potential health risk of acrylonitrile near hazardous waste sites. [Pg.70]

EPA has published a method of analysis specific for acrylonitrile in water (EPA 1982a) and a method applicable to its determination in water along with other purgeable organics (EPA 1982b). Other standard EPA methods are adaptable for the determination of acrylonitrile in wastes (EPA 1986b). [Pg.93]

Studies using radioactivity-labeled acrylonitrile indicate that acrylonitrile or its metabolites form covalent adducts with cellular macromolecules in most tissues. Studies to develop chemical or immunological methods for measuring these adducts would be especially valuable in detecting and perhaps even quantifying human exposure to acrylonitrile. Adverse health effects demonstrated following exposure to acrylonitrile, particularly acute exposures, were characteristic of cyanide toxicity. Because these effects are also indicative of exposure to many other toxicants, additional methods are needed for more specific biomarkers of effects of acrylonitrile exposure. [Pg.96]


See other pages where Acrylonitrile Specifications is mentioned: [Pg.464]    [Pg.134]    [Pg.162]    [Pg.181]    [Pg.185]    [Pg.191]    [Pg.202]    [Pg.256]    [Pg.430]    [Pg.516]    [Pg.523]    [Pg.96]    [Pg.927]    [Pg.313]    [Pg.570]    [Pg.16]    [Pg.197]    [Pg.206]    [Pg.873]    [Pg.131]    [Pg.66]    [Pg.802]    [Pg.170]    [Pg.184]    [Pg.24]    [Pg.27]    [Pg.11]    [Pg.18]    [Pg.19]    [Pg.20]    [Pg.21]    [Pg.45]    [Pg.65]    [Pg.66]   
See also in sourсe #XX -- [ Pg.231 ]




SEARCH



Acrylonitrile specificity

© 2024 chempedia.info