Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acrylates reaction with amines

Acrylic acid may readily polymerize at ambient temperature. Polymerization may be inhibited with 200 ppm of hydroquinone monomethyl ether (Aldrich 2006). In the presence of a catalyst or at an elevated tem-peratnre, the polymerization rate may accelerate, causing an explosion. The reactions of acrylic acid with amines, imines, and olenm are exothermic bnt not violent. Acrylic acid shonld be stored below its melting point with a trace quantity of polymerization inhibitor. Its reactions with strong oxidizing snbstances can be violent. [Pg.110]

Tosyloxypyridine, from pyri-dine-l-oxide, 723 trans-2-Imino-l 2ff)-pyridine-acrylic acid, 71 Triacetic acid lactone, 655 reaction with, amines, 655 ammonia, 655 glycine, 655... [Pg.1247]

Diethyl malonate blocked diisocyanates cross-fink polyols at 120°C for 30 min. The reaction with alcohols does not srield urethanes, rather transesterification occurs (134), and reaction with amines srields amides, not ureas. Storage-stable coatings can be formulated by using monofimctional alcohol in the solvent (135). Clear coats for automobiles that have both excellent environmental etch and abrasion resistance have been formulated with a combination of a hydroxy-functional acrylic resin, malonic ester blocked HDI and IPDI trimers, and an ME resin (136). [Pg.1433]

Vinyl-functional alkylene carbonates can also be prepared from the corresponding epoxides in a manner similar to the commercial manufacture of ethylene and PCs via CO2 insertion. The most notable examples of this technology are the syntheses of 4-vinyl-1,3-dioxolan-2-one (vinyl ethylene carbonate, VEC) (5, Scheme 24) from 3,4-epoxy-1-butene or 4-phenyl-5-vinyl-l,3-dioxolan-2-one (6, Scheme 24) from analogous aromatic derivative l-phenyl-2-vinyl oxirane. Although the homopolymerization of both vinyl monomers produced polymers in relatively low yield, copolymerizations effectively provided cyclic carbonate-containing copolymers. It was found that VEC can be copolymerized with readily available vinyl monomers, such as styrene, alkyl acrylates and methacrylates, and vinyl esters.With the exception of styrene, the authors found that VEC will undergo free-radical solution or emulsion copolymerization to produce polymeric species with a pendant five-membered alkylene carbonate functionality that can be further cross-linked by reaction with amines. Polymerizations of 4-phenyl-5-vinyl-l,3-dioxolan-2-one also provided cyclic carbonate-containing copolymers. [Pg.260]

Apart from the thoroughly studied aqueous Diels-Alder reaction, a limited number of other transformations have been reported to benefit considerably from the use of water. These include the aldol condensation , the benzoin condensation , the Baylis-Hillman reaction (tertiary-amine catalysed coupling of aldehydes with acrylic acid derivatives) and pericyclic reactions like the 1,3-dipolar cycloaddition and the Qaisen rearrangement (see below). These reactions have one thing in common a negative volume of activation. This observation has tempted many authors to propose hydrophobic effects as primary cause of ftie observed rate enhancements. [Pg.27]

Fig. 2. Functional groups on modified polyacrylamides (a) formed by reaction with dimethylamine and formaldehyde (Mannich reaction) (b), quatemized Mannich amine (c), carboxylate formed by acid or base-cataly2ed hydrolysis or copolymerization with sodium acrylate and (d), hydroxamate formed by... Fig. 2. Functional groups on modified polyacrylamides (a) formed by reaction with dimethylamine and formaldehyde (Mannich reaction) (b), quatemized Mannich amine (c), carboxylate formed by acid or base-cataly2ed hydrolysis or copolymerization with sodium acrylate and (d), hydroxamate formed by...
By virtue of their unique combination of reactivity and basicity, the polyamines react with, or cataly2e the reaction of, many chemicals, sometimes rapidly and usually exothermically. Some reactions may produce derivatives that ate explosives (eg, ethylenedinitrarnine). The amines can cataly2e a mnaway reaction with other compounds (eg, maleic anhydride, ethylene oxide, acrolein, and acrylates), sometimes resulting in an explosion. [Pg.46]

The formation of an enamine from an a,a-disubstituted cyclopentanone and its reaction with methyl acrylate was used in a synthesis of clovene (JOS). In a synthetic route to aspidospermine, a cyclic enamine reacted with methyl acrylate to form an imonium salt, which regenerated a new cyclic enamine and allowed a subsequent internal enamine acylation reaction (309,310). The required cyclic enamine could not be obtained in this instance by base isomerization of the allylic amine precursor, but was obtained by mercuric acetate oxidation of its reduction product. Condensation of a dihydronaphthalene carboxylic ester with an enamine has also been reported (311). [Pg.362]

A substantial number of photo-induced charge transfer polymerizations have been known to proceed through N-vinylcarbazole (VCZ) as an electron-donor monomer, but much less attention was paid to the polymerization of acrylic monomer as an electron receptor in the presence of amine as donor. The photo-induced charge-transfer polymerization of electron-attracting monomers, such as methyl acrylate(MA) and acrylonitrile (AN), have been recently studied [4]. In this paper, some results of our research on the reaction mechanism of vinyl polymerization with amine in redox and photo-induced charge transfer initiation systems are reviewed. [Pg.227]

The development of monoalkyl phosphate as a low skin irritating anionic surfactant is accented in a review with 30 references on monoalkyl phosphate salts, including surface-active properties, cutaneous effects, and applications to paste and liquid-type skin cleansers, and also phosphorylation reactions from the viewpoint of industrial production [26]. Amine salts of acrylate ester polymers, which are physiologically acceptable and useful as surfactants, are prepared by transesterification of alkyl acrylate polymers with 4-morpholinethanol or the alkanolamines and fatty alcohols or alkoxylated alkylphenols, and neutralizing with carboxylic or phosphoric acid. The polymer salt was used as an emulsifying agent for oils and waxes [70]. Preparation of pharmaceutical liposomes with surfactants derived from phosphoric acid is described in [279]. Lipid bilayer vesicles comprise an anionic or zwitterionic surfactant which when dispersed in H20 at a temperature above the phase transition temperature is in a micellar phase and a second lipid which is a single-chain fatty acid, fatty acid ester, or fatty alcohol which is in an emulsion phase, and cholesterol or a derivative. [Pg.611]

Benzodiazepin-2-ones are converted efficiently into the 3-amino derivatives by reaction with triisopropylbenzenesulfonyl (trisyl) azide followed by reduction <96TL6685>. Imines from these amines undergo thermal or lithium catalysed cycloaddition to dipolarophiles to yield 3-spiro-pyrrolidine derivatives <96T13455>. Thus, treatment of the imine 50 (R = naphthyl) with LiBr/DBU in the presence of methyl acrylate affords 51 in high yield. [Pg.326]

The divergent method is illustrated in Fig. 2-22 for the synthesis of polyamidoamine (PAMAM) dendrimers [Tomalia et al., 1990]. A repetitive sequence of two reactions are used—the Michael addition of an amine to an a,P-unsaturated ester followed by nucleophilic substitution of ester by amine. Ammonia is the starting core molecule. The first step involves reaction of ammonia with excess methyl acrylate (MA) to form LXIII followed by reaction with excess ethylenediamine (EDA) to yield LXIV. LXV is a schematic representation of the dendrimer formed after four more repetitive sequences of MA and EDA. [Pg.177]

Titanium ylides are generated from imine esters with titanium isopropoxide chlorides and amines or by transmetalation of the N-lithiated ylides (90,91). The regioselectivity of their reactions with methyl acrylate is opposite to that normally observed (90). A transition state is proposed in Scheme 11.13 to explain this alternative regioselectivity. Intramolecular cycloadditions of the titanium ylides offer a synthetic application of this regioselectivity. [Pg.767]

Dimethyl-2-vmyl-5(4/i/)-oxazolone (VDMO) 140 and 4,4-dimethyl-2-isopro-penyl-5(4//)-oxazolone 328 have been extensively investigated as monomers (Fig. 7.32). Copolymeiization of 140 or 328 with other monomers, for example, acrylates or acrylamides produces reactive polymers that are conveniently further modified by nucleophilic reaction with alcohols, amines, or other nucleophiles. ""... [Pg.202]

Amino-1,2,4-triazolo[l,5-a]pyrimidine derivatives (115) were prepared from 3,5-dihalo-l,2,4-triazoles (111) by amination followed by reaction with acrylic or crotonic ester (113) and then amination without the isolation of 112 and 114 [87T2497 88JAP(K)63/267782] (Scheme 22). [Pg.140]

The scope of the chemistry outlined in Figure 16.21 can be further expanded by including other acids susceptible to irreversible reaction with a primary amine. These can be other halocarboxylic acids, such as (chloromethyl)benzoic acids, or acrylic acid, which reacts with amines to yield N-substituted (1-alanines. N-Substituted oligo((5-ala-nines) have been successfully prepared by sequentially acylating support-bound amines with acrylic acid and then performing a Michael addition with primary amines [239]. [Pg.490]

REPPE PROCESS. Any of several processes involving reaction of acetylene (1) with formaldehyde to produce 2-butync-l,4-diol which can be converted to butadiene (2) with formaldehyde under different conditions to produce propargyl alcohol and, form this, allyl alcohol (3) with hydrogen cyanide to yield acrylonitrile (4) with alcohols to give vinyl ethers (5) with amines or phenols to give vinyl derivatives (6) with carbon monoxide and alcohols to give esters of acrylic acid (7) by polymerization to produce cyclooctatetraene and (8) with phenols to make resins. The use of catalysis, pressures up to 30 atm, and special techniques to avoid or contain explosions are important factors in these processes. [Pg.1436]


See other pages where Acrylates reaction with amines is mentioned: [Pg.71]    [Pg.168]    [Pg.46]    [Pg.435]    [Pg.546]    [Pg.8693]    [Pg.306]    [Pg.113]    [Pg.46]    [Pg.135]    [Pg.541]    [Pg.8]    [Pg.172]    [Pg.5]    [Pg.165]    [Pg.190]    [Pg.656]    [Pg.276]    [Pg.44]    [Pg.360]    [Pg.293]    [Pg.9]    [Pg.30]    [Pg.234]    [Pg.333]    [Pg.558]   
See also in sourсe #XX -- [ Pg.92 , Pg.273 , Pg.274 , Pg.497 ]




SEARCH



Acrylate reaction

Reaction with amines

© 2024 chempedia.info