Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acoustics defined

Meidan, V.M., et al. 1998. Phonophoresis of hydrocortisone with enhancers An acoustically defined model. Int J Pharm 170 157. [Pg.329]

Acoustic emission is a naturally occurring phenomenon within materials, and the term Acoustic Emission is used to define the spontaneous elastic energy released within material or by a process, in the form of transient elastic waves. (2)... [Pg.31]

There have been numerous efforts to inspect specimens by ultrasonic reflectivity (or pulse-echo) measurements. In these inspections ultrasonic reflectivity is often used to observe changes in the acoustical impedance, and from this observation to localize defects in the specimen. However, the term defect is related to any discontinuity within the specimen and, consequently, more information is needed than only ultrasonic reflectivity to define the discontinuity as a defect. This information may be provided by three-dimensional ultrasonic reflection tomography and a priori knowledge about the specimen (e.g., the specimen fabrication process, its design, the intended purpose and the material). A more comprehensive review of defect characterization and related nondestructive evaluation (NDE) methods is provided elsewhere [1]. [Pg.200]

Tasks of the USCT IT are restoring of SD of the certain acoustic parameter of material in product volume on the base of measured parameters of US signals, but afterwards determination of necessary PMF. It is defined strong factors basically on the grounds of their correlation with acoustic features. [Pg.250]

The Champ-Sons model is a most effieient tool allowing quantitative predictions of the field radiated by arbitrary transducers and possibly complex interfaces. It allows one to easily define the complete set of transducer characteristics (shape of the piezoelectric element, planar or focused lens, contact or immersion, single or multi-element), the excitation pulse (possibly an experimentally measured signal), to define the characteristics of the testing configuration (geometry of the piece, transducer position relatively to the piece, characteristics of both the coupling medium and the piece), and finally to define the calculation to run (field-points position, acoustical quantity considered). [Pg.737]

The accredited laboratory must dispose of data about the state of the block surfaces, their geometrical sizes and acoustical characteristics. These characteristics are defined in periodical testing of the blocks. [Pg.958]

Reverberation Control. Reverberation time (T q) is defined as the length of time in seconds for the sound of an instantaneously stopped source in a room to decay by 60 decibels (dB). Reverberation time is one important factor in determining the acoustical character of a space and its suitabiHty for specific activities. For lectures and other speech activities a relatively short reverberation time is desirable so that syllables do not persist and overlap one another, causing difficulty with inteUigibiHty conversely, for music activities, a relatively long reverberation time is desirable to allow blending of the sound and a sense of being surrounded by the music. Without reverberation music usually sounds dull and lifeless. [Pg.312]

L bor toiyMethods. The laboratory test method for determining the sound-transmission loss performance of constmctions is defined in ASTM E90-90 (11). The sample is installed in an opening between two highly reverberant rooms that are acoustically well isolated from each other. [Pg.316]

A chemical microsensor can be defined as an extremely small device that detects components in gases or Hquids (52—55). Ideally, such a sensor generates a response which either varies with the nature or concentration of the material or is reversible for repeated cycles of exposure. Of the many types of microsensors that have been described (56), three are the most prominent the chemiresistor, the bulk-wave piezoelectric quartz crystal sensor, and the surface acoustic wave (saw) device (57). [Pg.396]

The effect of compressibility is important in high mach number machines. Mach number is the ratio of velocity to the acoustic speed of a gas at a given temperature M = Vja. Acoustic speed is defined as the ratio change in pressure of the gas with respect to its density if the entropy is held constant ... [Pg.115]

The standards define terms used in the industry and describe the basic design of the unit. It deals with the casing, rotors and shafts, wheels and blades, combustors, seals, bearings, critical speeds, pipe connections and auxiliary piping, mounting plates, weather-proofing, and acoustical treatment. [Pg.156]

Sound power is the total energy emitted from a fan that is a function of the fan s speed and point of operation and is independent of the fan s installation and surrounding environment Sound power level is the acoustical power expressed in decibels (dB) radiating from a source. Sound power can be converted into predictable pressure levels (dBA) after the acoustical environment surrounding the fan is defined. Sound pressure for a specific fan varies with... [Pg.562]

When the pressure amplitude of an acoustic wave in liquid or solid exceeds the ambient pressure (atmospheric pressure), the instantaneous pressure becomes negative during the rarefaction phase of an acoustic wave. Negative pressure is defined as the force acting on the surface of a liquid (or solid) element per surface area to expand the element [3,4]. For example, consider a closed cylinder filled with liquid... [Pg.1]

In Fig. 1.1, the parameter space for transient and stable cavitation bubbles is shown in R0 (ambient bubble radius) - pa (acoustic amplitude) plane [15]. The ambient bubble radius is defined as the bubble radius when an acoustic wave (ultrasound) is absent. The acoustic amplitude is defined as the pressure amplitude of an acoustic wave (ultrasound). Here, transient and stable cavitation bubbles are defined by their shape stability. This is the result of numerical simulations of bubble pulsations. Above the thickest line, bubbles are those of transient cavitation. Below the thickest line, bubbles are those of stable cavitation. Near the left upper side, there is a region for bubbles of high-energy stable cavitation designated by Stable (strong nf0) . In the brackets, the type of acoustic cavitation noise is indicated. The acoustic cavitation noise is defined as acoustic emissions from... [Pg.3]

Fig. 1.1 The regions for transient cavitation bubbles and stable cavitation bubbles when they are defined by the shape stability of bubbles in the parameter space of ambient bubble radius (R0) and the acoustic amplitude (p ). The ultrasonic frequency is 515 kHz. The thickest line is the border between the region for stable cavitation bubbles and that for transient ones. The type of bubble pulsation has been indicated by the frequency spectrum of acoustic cavitation noise such as nf0 (periodic pulsation with the acoustic period), nfo/2 (doubled acoustic period), nf0/4 (quadrupled acoustic period), and chaotic (non-periodic pulsation). Any transient cavitation bubbles result in the broad-band noise due to the temporal fluctuation in the number of bubbles. Reprinted from Ultrasonics Sonochemistry, vol. 17, K.Yasui, T.Tuziuti, J. Lee, T.Kozuka, A.Towata, and Y. Iida, Numerical simulations of acoustic cavitation noise with the temporal fluctuation in the number of bubbles, pp. 460-472, Copyright (2010), with permission from Elsevier... Fig. 1.1 The regions for transient cavitation bubbles and stable cavitation bubbles when they are defined by the shape stability of bubbles in the parameter space of ambient bubble radius (R0) and the acoustic amplitude (p ). The ultrasonic frequency is 515 kHz. The thickest line is the border between the region for stable cavitation bubbles and that for transient ones. The type of bubble pulsation has been indicated by the frequency spectrum of acoustic cavitation noise such as nf0 (periodic pulsation with the acoustic period), nfo/2 (doubled acoustic period), nf0/4 (quadrupled acoustic period), and chaotic (non-periodic pulsation). Any transient cavitation bubbles result in the broad-band noise due to the temporal fluctuation in the number of bubbles. Reprinted from Ultrasonics Sonochemistry, vol. 17, K.Yasui, T.Tuziuti, J. Lee, T.Kozuka, A.Towata, and Y. Iida, Numerical simulations of acoustic cavitation noise with the temporal fluctuation in the number of bubbles, pp. 460-472, Copyright (2010), with permission from Elsevier...
An ultrasonic horn has a small tip from which high intensity ultrasound is radiated. The acoustic intensity is defined as the energy passing through a unit area normal to the direction of sound propagation per unit time. Its units are watts per square meter (W/m2). It is related to the acoustic pressure amplitude (P) as follows for a plane traveling wave [1]. [Pg.22]

The different behaviour of contact resistance in the two cases can be examined through the two models the just described acoustic mismatch model and the diffuse mismatch model which suppose that all the phonons are scattered at the interface. Hence these two models define two limits in the behaviour of phonons at a discontinuity. [Pg.111]

Time resolution of the enthalpy changes is often possible and depends on a number of experimental parameters, such as the characteristics of the transducer (oscillation frequency and relaxation time) and the acoustic transit time of the system, za, which can be defined by ra = r0/ua where r0 is the radius of the irradiated sample, and va is the speed of sound in the liquid. The observed voltage response of the transducer, V (t) is given by the convolution of the time-dependent heat source, H (t) and the instrument response function,... [Pg.256]

In three dimensions, transverse and longitudinal optic and acoustic modes result. The dispersion curve for CuCl along [100] of the cubic unit cell [3] is shown in Figure 8.11(a) as an example. The number of discrete modes with frequencies in a defined interval can be displayed as a function of the frequency. This gives what is termed the density of vibrational modes or the vibrational density of states (DoS). The vibrational DoS of CuCl is given in Figure 8.11(b). [Pg.240]

The acoustic impedance Z is defined as the ratio of a variation of acoustic pressure to the induced velocity of matter ... [Pg.208]

The analysis of propagating acoustic waves in an elastic medium allows its characterization by means of strain-stress relationships. The stress ay is defined as the ratio of an external force F parallel to a direction i (x,y or z) to a surface S perpendicular to the direction j. [Pg.209]


See other pages where Acoustics defined is mentioned: [Pg.59]    [Pg.67]    [Pg.823]    [Pg.885]    [Pg.885]    [Pg.924]    [Pg.311]    [Pg.311]    [Pg.343]    [Pg.483]    [Pg.29]    [Pg.438]    [Pg.485]    [Pg.77]    [Pg.5]    [Pg.85]    [Pg.78]    [Pg.378]    [Pg.272]    [Pg.165]    [Pg.435]    [Pg.147]    [Pg.20]    [Pg.318]    [Pg.226]    [Pg.60]    [Pg.115]    [Pg.92]    [Pg.241]   


SEARCH



Surface acoustic wave, defined

© 2024 chempedia.info