Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acids in acidic solvents

The effects of dissolving acids in acidic non-aqueous solvents can be dramatic. When dissolved in H2SO4, HCIO4 (for which pXa in aqueous solution is —8) is practically non-ionized and HNO3 ionizes according to equation 9.7. [Pg.239]

Reaction 9.7 can be regarded as the summation of equilibria 9.8-9.10, and it is the presence of [N02] that is responsible for the use of an HNO3/H2SO4 mixture in the nitration of aromatic compounds. [Pg.239]

These examples signify caution just because we name a compound an acid , it may not behave as one in non-aqueous media. Later we consider superacid media in which even hydrocarbons may be protonated (see Section 9.9). [Pg.239]

We noted above that HCl, when dissolved in acetic acid, behaves as a weak acid. Hydrogen bromide and iodide behave similarly but the extent of ionization of the three hydrogen halides varies along the series HI HBr HCl. This contrasts with the fact that all three compounds are classed as strong acids (i.e. fully ionized) in aqueous solution. Thus, acetic acid exerts a differentiating effect on the acidic behaviour of HCl, HBr and HI, whereas water does not. [Pg.217]

A Brpnsted acid is a proton donor, and a Br0nsted base accepts protons. In aqueous solution, [H30] is formed and in bulk water, self-ionization corresponds to the transfer of a proton from one solvent molecule to another (eq. 9.11) illustrating amphoteric behaviour (see Section 7.8). [Pg.273]


The lower members of the series are liquids soluble in water and volatile in steam. As the number of carbon atoms in the molecule increases, the m.p. and b.p. rise and the acids become less soluble in water and less volatile. The higher fatty acids are solids, insoluble in water and soluble in organic solvents. [Pg.173]

Tin IV) chloride, SnCU, stannic chloride. M.p. — 33" C, b.p. 1I4°C. Colourless fuming liquid (Sn plus CI2) hydrolysed in water but forms SnCl4,5H20 and [SnCl p" from acid solutions, soluble in organic solvents. Used as a mordant. [Pg.398]

If triphenylmethyl chloride in ether is treated with sodium, a yellow colour is produced due to the presence of the anionic spiecies PhsC". Alternatively, if triphenylmethyl chloride is treated with silver perchlorate in a solvent such as THF, the triphenylmethyl cation is obtained. More conveniently, triphenylmethyl salts, PhsC X", can be obtained as orange-red crystalline solids from the action of the appropriate strong acid on triphenylcarbinol in ethanoic or propanoic anhydride solution. The perchlorate, fluoroborate and hexafluoro-phosphate salts are most commonly used for hydride ion abstraction from organic compounds (e.g. cycloheptatriene gives tropylium salts). The salts are rather easily hydrolysed to triphenylcarbinol. [Pg.406]

Anotlier model system consists of polymetliylmetliacrylate (PMMA) latex, stabilized in organic solvents by a comb polymer, consisting of a PMMA backbone witli poly-12-hydroxystearic acid (PHSA) chains attached to it [10]. The PHSA chains fonn a steric stabilization layer at tire surface (see section C2.6.4). Such particles can approach tire hard-sphere model very well [111. [Pg.2670]

If a catalyst is to work well in solution, it (and tire reactants) must be sufficiently soluble and stable. Most polar catalysts (e.g., acids and bases) are used in water and most organometallic catalysts (compounds of metals witli organic ligands bonded to tliem) are used in organic solvents. Some enzymes function in aqueous biological solutions, witli tlieir solubilities detennined by the polar functional groups (R groups) on tlieir outer surfaces. [Pg.2700]

When we use any substance as a solvent for a protonic acid, the acidic and basic species produced by dissociation of the solvent molecules determine the limits of acidity or basicity in that solvent. Thus, in water, we cannot have any substance or species more basic than OH or more acidic than H30 in liquid ammonia, the limiting basic entity is NHf, the acidic is NH4. Many common inorganic acids, for example HCl, HNO3, H2SO4 are all equally strong in water because their strengths are levelled to that of the solvent species Only by putting them into a more acidic... [Pg.87]

Our potential is a sum of smooth surface potentials that model amino acid-solvent interactions and of smooth pair potentials that model amino acid-amino acid interactions. As in [24], we take as essential only the Ca atoms. [Pg.213]

Precautions, (i) The above tests must be carried out with discretion. If the substance is only moderately soluble in the solvent selected, and a comparatively large volume of the latter is required, the consequent dilution of the acid in the reagent may cause the separation of the free 2,4 dinitrophenylhydrazine (although this is more likely to happen with Reagent B than with A). Furthermore, if the compound under investigation should have basic properties, the neutralisation of part of the acid in the reagent may have the same result. [Pg.264]

Dinitrophenylhydra2ones usually separate in well-formed crystals. These can be filtered at the pump, washed with a diluted sample of the acid in the reagent used, then with water, and then (when the solubility allows) with a small quantity of ethanol the dried specimen is then usually pure. It should, however, be recrystallised from a suitable solvent, a process which can usually be carried out with the dinitrophenylhydrazones of the simpler aldehydes and ketones. Many other hydrazones have a very low solubility in most solvents, and a recrystallisation which involves prolonged boiling with a large volume of solvent may be accompanied by partial decomposition, and with the ultimate deposition of a sample less pure than the above washed, dried and unrecrystal-lised sample. [Pg.264]

Benzene. Pure benzene (free in particular from toluene) must be used, otherwise the freezing-point is too low, and crystallisation may not occur with ice-water cooling alone. On the other hand, this benzene should not be specially dried immediately before use, as it then becomes slightly hygroscopic and does not give a steady freezing-point until it has been exposed to the air for 2-3 hours. Many compounds (particularly the carboxylic acids) associate in benzene, and molecular weights determined in this solvent should therefore be otherwise confirmed. [Pg.435]

If the substance is found to be far too soluble in one solvent and much too insoluble in another solvent to allow of satisfactory recrystallisation, mixed solvents or solvent pairs may frequently be used with excellent results. The two solvents must, of course, be completely miscible. Recrystallisation from mixed solvents is carried out near the boiling point of the solvent. The compound is dissolved in the solvent in which it is very soluble, and the hot solvent, in which the substance is only sparingly soluble, is added cautiously until a slight turbidity is produced. The turbidity is then just cleared by the addition of a small quantity of the first solvent and the mixture is allowed to cool to room temperature crystals will separate. Pairs of liquids which may be used include alcohol and water alcohol and benzene benzene and petroleum ether acetone and petroleum ether glacial acetic acid and water. [Pg.125]

It is marketed as a 35-40 per cent, solution in water (formalin). The rpactions of formaldehyde are partly typical of aldehydes and partly peculiar to itself. By evaporating an aqueous solution paraformaldehyde or paraform (CHjO), an amorphous white solid is produced it is insoluble in most solvents. When formaldehyde is distilled from a 60 per cent, solution containing 2 per cent, of sulphuric acid, it pol5unerises to a crystalline trimeride, trioxane, which can be extracted with methylene chloride this is crystalline (m.p. 62°, b.p. 115°), readily soluble in water, alcohol and ether, and devoid of aldehydic properties ... [Pg.319]

The methyl benzoate is removed by extraction with chloroform, and upon cautious acidification of the aqueous layer perbenzoic acid is liberated the latter is extracted with chloroform and is usually preserved as a solution in this solvent ... [Pg.807]

If it is suspected that phthalic acid is present in the phthalic anhydride, the latter may be dissolved in chloroform the phthalic acid is insoluble in this solvent. [Pg.810]

Compounds which dissolve in concentrated sulphuric acid may be further subdivided into those which are soluble in syrupy phosphoric acid (A) and those which are insoluble in this solvent (B) in general, dissolution takes place without the production of appreciable heat or colour. Those in class A include alcohols, esters, aldehydes, methyl ketones and cyclic ketones provided that they contain less than nine carbon atoms. The solubility limit is somewhat lower than this for ethers thus re-propyl ether dissolves in 85 per cent, phosphoric acid but re-butyl ether and anisole do not. Ethyl benzoate and ethyl malonate are insoluble. [Pg.1050]

Group II. The classes 1 to 5 are usually soluble in dilute alkali and acid. Useful information may, however, be obtained by examining the behaviour of Sails to alkaline or acidic solvents. With a salt of a water-soluble base, the characteristic odour of an amine is usually apparent when it is treated with dilute alkali likewise, the salt of a water soluble, weak acid is decomposed by dilute hydrochloric acid or by concentrated sulphuric acid. The water-soluble salt of a water-insoluble acid or base will give a precipitate of either the free acid or the free base when treated with dilute acid or dilute alkali. The salts of sulphonic acids and of quaternary bases (R4NOH) are unaflFected by dilute sodium hydroxide or hydrochloric acid. [Pg.1053]

Step 3. The neutral components. The ethereal solution (E remaining after the acid extraction of Step 2 should contain only the neutral compounds of Solubility Groups V, VI and VII (see Table XI,5). Dry it with a little anhydrous magnesium sulphate, and distil off the ether. If a residue is obtained, neutral compounds are present in the mixture. Test a portion of this with respect to its solubility in concentrated sulphuric acid if it dissolves in the acid, pour the solution slowly and cautiously into ice water and note whether any compound is recovered. Examine the main residue for homogeneity and if it is a mixture devise procedures, based for example upon differences in volatility, solubility in inert solvents, reaction with hydrolytic and other reagents, to separate the components. [Pg.1096]

By far the most effective method, however, is catalysis by Lewis-acids. In organic solvents. [Pg.12]

A combination of the promoting effects of Lewis acids and water is a logical next step. However, to say the least, water has not been a very popular medium for Lewis-acid catalysed Diels-Alder reactions, which is not surprising since water molecules interact strongly with Lewis-acidic and the Lewis-basic atoms of the reacting system. In 1994, when the research described in this thesis was initiated, only one example of Lewis-acid catalysis of a Diels-Alder reaction in water was published Lubineau and co-workers employed lanthanide triflates as a catalyst for the Diels-Alder reaction of glyoxylate to a relatively unreactive diene . No comparison was made between the process in water and in organic solvents. [Pg.31]

Scheme 2.1. Lewis-acid catalysed organic reactions that are promoted by small amounts ofwater in organic solvents. Scheme 2.1. Lewis-acid catalysed organic reactions that are promoted by small amounts ofwater in organic solvents.
In organic solvents Lewis-acid catalysis also leads to large accelerations of the Diels-Alder reaction. Table 2.2 shows the rate constants for the Cu -catalysed Diels-Alder reaction between 2.4a and 2.5 in different solvents. [Pg.54]

Clearly, complete understanding of solvent effects on the enantioselectivity of Lewis-acid catalysed Diels-Alder reactions has to await future studies. For a more detailed mechanistic understanding of the origins of enantioselectivity, extension of the set of solvents as well as quantitative assessment of the strength of arene - arene interactions in these solvent will be of great help. [Pg.97]


See other pages where Acids in acidic solvents is mentioned: [Pg.217]    [Pg.239]    [Pg.272]    [Pg.20]    [Pg.25]    [Pg.48]    [Pg.140]    [Pg.184]    [Pg.197]    [Pg.208]    [Pg.240]    [Pg.258]    [Pg.259]    [Pg.275]    [Pg.278]    [Pg.313]    [Pg.400]    [Pg.580]    [Pg.1443]    [Pg.2609]    [Pg.86]    [Pg.435]    [Pg.889]    [Pg.889]    [Pg.1062]    [Pg.19]    [Pg.31]    [Pg.43]    [Pg.44]    [Pg.86]    [Pg.92]    [Pg.164]   


SEARCH



Acids solvents

Solvents acidic

Solvents acidity

© 2024 chempedia.info